Большая и малая оси эллипса прямоугольной изометрии окружности равны

Аксонометрические проекции

Для того чтобы наиболее наглядно передать форму изделий и предметов, ясно и понятно представить схемы взаимодействия различных деталей, по мере надобности применяются аксонометрические проекции.

Содержание
  1. Прямоугольная изометрическая проекция
  2. Изображение окружностей в прямоугольной изометрии
  3. Изображение детали в прямоугольной изометрии
  4. Прямоугольная диметрическая проекция
  5. Изображение окружностей в прямоугольной диметрии
  6. Изображение детали в прямоугольной диметрии
  7. Косоугольная фронтальная изометрическая проекция
  8. Изображения окружности в косоугольной фронтальной изометрии
  9. Изображение детали в косоугольной фронтальной изометрии
  10. Косоугольная горизонтальная изометрическая проекция
  11. Изображения окружности в косоугольной горизонтальной изометрической проекции
  12. Изображение детали в косоугольной горизонтальной изометрии
  13. Косоугольная фронтальная диметрическая проекция
  14. Изображения окружности в косоугольной фронтальной диметрии
  15. Изображение детали в косоугольной фронтальной диметрии
  16. Нанесение размеров
  17. Штриховка
  18. Большая и малая оси эллипса прямоугольной изометрии окружности равны
  19. 77. Прямоугольная изометрия
  20. 📹 Видео

Видео:Построение эллипса по восьми точкам в прямоугольной диметрииСкачать

Построение эллипса по восьми точкам в прямоугольной диметрии

Прямоугольная изометрическая проекция

Проекция этого вида отличается тем, что в ней оси аксонометрии располагаются друг по отношению к другу под углом 120°. При этом искажения изображения по всем аксонометрическим осям имеют один и тот же коэффициент, равный 0,82.

Чтобы упростить изометрическую проекцию, по осям x, y и z, как правило, выполняют без искажений, то есть его коэффициент выбирают равным единице.

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Видео:Аксонометрические Проекции Окружности #черчение #окружность #проекции #изометрияСкачать

Аксонометрические Проекции Окружности  #черчение #окружность #проекции #изометрия

Изображение окружностей в прямоугольной изометрии

Если окружности располагаются в тех плоскостях, которые параллельны плоскостям проекций, то в аксонометрической плоскости они изображаются в виде эллипсов.

В тех случаях, когда по осям x, y, и z изометрическая проекция выполняется без искажений, длина большой и малой осей эллипсов составляет, соответственно, 1,22 и 0,71 от диаметра отображаемой окружности.

В тех случаях, когда по осям x, y и z изометрическая проекция выполняется с искажениями, длина большой оси эллипсов равняется диаметру отображаемой окружности, а длина малой оси – 0,58 от нее.

Видео:Построение прямоугольной изометрии окружностиСкачать

Построение прямоугольной изометрии окружности

Изображение детали в прямоугольной изометрии

Чтобы наиболее наглядно передать особенности формы различных изделий и предметов, их изображают в прямоугольной изометрической проекции.

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Видео:2 2 3 построение изометрии окружностиСкачать

2 2 3  построение изометрии окружности

Прямоугольная диметрическая проекция

Отличительной особенностью прямоугольной диметрической проекции является то, что она имеет различные коэффициенты искажения по разным аксонометрическим осям: для x и z он имеет значение 0,94, а по y, равна значению 0,47.

В большинстве случаев диметрическая проекция выполняется с коэффициентом искажения по оси аксонометрии y, равным 0,5, и по осям аксонометрии z и x, равным единице.

Видео:Окружность в прямоугольной изометрии 3 способ построенияСкачать

Окружность в прямоугольной изометрии 3 способ построения

Изображение окружностей в прямоугольной диметрии

Те окружности, которые располагаются в плоскостях, являющихся параллельными по отношению к плоскости проекции, при проецировании на аксонометрическую плоскость изображаются в виде эллипсов.

В тех случаях, когда диметрическая проекция окружности выполняется в неискаженном виде по осям z и x, длина большой оси эллипсов составляет 1,06 от диаметра изображаемой окружности, при этом малая ось эллипса под номером 1 ровна 0,95, а эллипсов под номерами 2 и 3 ровна 0,35 диаметра окружности.

В тех случаях, когда диметрическая проекция окружности выполняется в искаженном виде по осям x и z, длина больших осей всех эллипсов соответствует диаметру окружности, малой оси эллипса под номером 1 равна 0,9, а эллипсов с номерами 2 и 3 равна 0,33 длины диаметров окружности.

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Видео:Найти углы, под которыми видны оси эллипса из центра данной окружностиСкачать

Найти углы, под которыми видны оси эллипса из центра данной окружности

Изображение детали в прямоугольной диметрии

Для того чтобы в печатных изданиях и на некоторых других видах носителей информации представить деталь или изделие наиболее наглядно, ее изображают в прямоугольной диметрии.

Видео:КАК НАРИСОВАТЬ КРУГ В ИЗОМЕТРИИ (ОВАЛ В ИЗОМЕТРИЧЕСКОЙ ПРОЕКЦИИ).Скачать

КАК НАРИСОВАТЬ КРУГ В ИЗОМЕТРИИ (ОВАЛ В ИЗОМЕТРИЧЕСКОЙ ПРОЕКЦИИ).

Косоугольная фронтальная изометрическая проекция

Для этой проекции характерно то, что проекции с углом наклона оси у допускается располагать с углом наклона от 30° до 60°. Фронтальная изометрическая проекция по осям x, y и z искажений не имеет.

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Изображения окружности в косоугольной фронтальной изометрии

Те окружности, которые располагаются в плоскостях, лежащих параллельно фронтальной плоскости проекций, на аксонометрическую плоскость проецируются в виде окружностей. Те окружности, которые располагаются в плоскостях, находящихся параллельно профильной и горизонтальной плоскостям проекций, проецируются в эллипсы. При этом длина их больших осей составляет 1,3 диаметра окружности, а малой оси – 0,54 диаметра окружности.

Видео:§28 Эксцентриситет эллипсаСкачать

§28 Эксцентриситет эллипса

Изображение детали в косоугольной фронтальной изометрии

Изображение деталей в косоугольной фронтальной изометрии, используется для того, чтобы наиболее наглядно передать форму изделий и предметов.

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Видео:4K Построение эллипса по точкам, ellipse constructionСкачать

4K Построение эллипса по точкам, ellipse construction

Косоугольная горизонтальная изометрическая проекция

Отличительной особенностью косоугольной горизонтальной изометрической проекции является то, что здесь допускается применять, что проекции с углом наклона оси у допускается располагать под углом наклона от 45° до 60°, при этом угол 90° между осями x и y должен сохраняться неизменным. В данной проекции искажения отсутствуют по всем осям.

Видео:Как начертить овал. Эллипс вписанный в ромбСкачать

Как начертить овал. Эллипс вписанный в ромб

Изображения окружности в косоугольной горизонтальной изометрической проекции

Те окружности, которые располагаются в плоскостях, находящихся параллельно горизонтальной плоскости проекций, на аксонометрическую плоскость проецируются в окружности. Те окружности, которые располагаются в плоскостях, находящихся параллельно профильной и фронтальной плоскостям проекций, проецируются в эллипсы.

Наибольшая ось эллипса под номером 1 равна 1,37, а малая ось равна 0,37 от диаметра окружности. Большая ось эллипса номер 3 равна 1,22, а малая ось равна 0,71 от диаметра окружности.

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Видео:Прямоугольные диметрические проекцииСкачать

Прямоугольные диметрические проекции

Изображение детали в косоугольной горизонтальной изометрии

Эта проекция используется для того, чтобы наиболее наглядно передать форму изделий и предметов.

Видео:ЭллипсСкачать

Эллипс

Косоугольная фронтальная диметрическая проекция

Отличительной чертой этой проекции является то, что аксометрическая ось y может иметь угол наклона от 30° до 60°. При этом коэффициент искажения по осям x и z равняется единице, а по оси y0,5.

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Видео:Часть 1. Изометрическая проекция. (стр. 29)Скачать

Часть 1. Изометрическая проекция. (стр. 29)

Изображения окружности в косоугольной фронтальной диметрии

Те окружности, которые располагаются в плоскостях, находящихся параллельно фронтальной плоскости проекций, на аксонометрическую плоскость проецируются в окружности. Те окружности, которые располагаются в плоскостях, находящихся параллельно профильной и горизонтальной плоскостям проекций, проецируются в эллипсы. При этом длина их больших осей составляет 1,07 диаметра окружности, а малой оси – 0,33 диаметра окружности.

Видео:Изображение окружности в перспективе. Эллипс.Скачать

Изображение окружности в перспективе. Эллипс.

Изображение детали в косоугольной фронтальной диметрии

Эта проекция используется для того, чтобы наиболее наглядно передать форму изделий и предметов.

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Видео:Построение прямоугольной изометрии детали (ДГР-5)Скачать

Построение прямоугольной изометрии детали (ДГР-5)

Нанесение размеров

Размерные линии при изображении аксонометрических проекций должны наноситься параллельно измеряемым отрезкам, а выносные – параллельно аксонометрическим осям.

Видео:Как начертить овал во фронтальной плоскостиСкачать

Как начертить овал во фронтальной плоскости

Штриховка

Сечения во всех аксонометрических проекциях наносится штриховкой. При этом ее линии должны быть параллельны лежащим в соответствующих координатных плоскостях диагоналям проекций квадратов.

Видео:ПОСТРОЕНИЕ ОВАЛА │ КАК НАЧЕРТИТЬ ОВАЛ ПРИ ПОСТРОЕНИИ АКСОНОМЕТРИИ │ Урок #61Скачать

ПОСТРОЕНИЕ ОВАЛА │ КАК НАЧЕРТИТЬ ОВАЛ ПРИ ПОСТРОЕНИИ АКСОНОМЕТРИИ │ Урок #61

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Контрольные задания по теме: эпюр № 6

Для наглядного изображения предметов (изделий или их составных частей) рекомендуется применять аксонометрические проекции, выбирая в каждом отдельном случае наиболее подходящую из них.

Сущность метода аксонометрического проецирования заключается в том, что заданный предмет вместе с координатной системой, к которой он отнесен в пространстве, параллельным пучком лучей проецируется на некоторую плоскость. Направление проецирования на аксонометрическую плоскость не совпадает ни с одной из координатных осей и не параллельно ни одной из координатных плоскостей.

Все виды аксонометрических проекций характеризуются двумя параметрами: направлением аксонометрических осей и коэффициентами искажения по этим осям. Под коэффициентом искажения понимается отношение величины изображения в аксонометрической проекции к величине изображения в ортогональной проекции.

В зависимости от соотношения коэффициентов искажения аксонометрические проекции подразделяются на:

— изометрические, когда все три коэффициента искажения одинаковы (kx=ky=kz);

— диметрические, когда коэффициенты искажения одинаковы по двум осям, а третий не равен им (kx= kz ≠ky);

— триметрические, когда все три коэффициенты искажения не равны между собой (kx≠ky≠kz).

В зависимости от направления проецирующих лучей аксонометрические проекции подразделяются на прямоугольные и косоугольные. Если проецирующие лучи перпендикулярны аксонометрической плоскости проекций, то такая проекция называется прямоугольной. К прямоугольным аксонометрическим проекциям относятся изометрическая и диметрическая. Если проецирующие лучи направлены под углом к аксонометрической плоскости проекций, то такая проекция называется косоугольной. К косоугольным аксонометрическим проекциям относятся фронтальная изометрическая, горизонтальная изометрическая и фронтальная диметрическая проекции.

В прямоугольной изометрии углы между осями равны 120°. Действительный коэффициент искажения по аксонометрическим осям равен 0,82, но на практике для удобства построения показатель принимают равным 1. Вследствие этого аксонометрическое изображение получается увеличенным в Большая и малая оси эллипса прямоугольной изометрии окружности равныраза.

Изометрические оси изображены на рисунке 57.

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 57

Построение изометрических осей можно выполнить при помощи циркуля (рисунок 58). Для этого сначала проводят горизонтальную линию и перпендикулярно к ней проводят ось Z. Из точки пересечения оси Z с горизонтальной линией (точка О) проводят вспомогательную окружность произвольным радиусом, которая пересекает ось Z в точке А. Из точки А этим же радиусом проводят вторую окружность до пересечения с первой в точках В и С. Полученную точку В соединяют с точкой О — получают направление оси Х. Таким же образом соединяют точку С с точкой О — получают направление оси Y.

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 58

Построение изометрической проекции шестиугольника представлено на рисунке 59. Для этого необходимо отложить по оси X радиус описанной окружности шестиугольника в обе стороны относительно начала координат. Затем, по оси Y отложить величину размера под ключ, из полученных точек провести линии параллельно оси X и отложить по ним величину стороны шестиугольника.

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 59

Построение окружности в прямоугольной изометрической проекции

Наиболее сложной плоской фигурой для вычерчивания в аксонометрии является окружность. Как известно, окружность в изометрии проецируется в эллипс, но построение эллипса довольно сложно, поэтому ГОСТ 2.317-69 рекомендует вместо эллипсов применять овалы. Существует несколько способов построения изометрических овалов. Рассмотрим один из наиболее распространенных.

Размер большой оси эллипса 1,22d, малой 0,7d, где d — диаметр той окружности, изометрия которой строится. На рисунке 60 показан графический способ определения большой и малой осей изометрического эллипса. Для определения малой оси эллипса соединяют точки С и D. Из точек С и D, как из центров, проводят дуги радиусов, равных СD, до взаимного их пересечения. Отрезок АВ — большая ось эллипса.

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 60

Установив направление большой и малой осей овала в зависимости от того, какой координатной плоскости принадлежит окружность, по размерам большой и малой оси проводят две концентрические окружности, в пересечении которых с осями намечают точки О1, О2, О3, О4, являющиеся центрами дуг овала (рисунок 61).

Для определения точек сопряжения проводят линии центров, соединяя О1, О2, О3, О4. из полученных центров О1, О2, О3, О4 проводят дуги радиусами R и R1. размеры радиусов видны на чертеже.

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 61

Направление осей эллипса или овала зависит от положения проецируемой окружности. Существует следующее правило: большая ось эллипса всегда перпендикулярна к той аксонометрической оси, которая на данную плоскость проецируется в точку, а малая ось совпадает с направлением этой оси (рисунок 62).

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 62

Штриховка и изометрической проекции

Линии штриховки сечений в изометрической проекции, согласно ГОСТ 2.317-69, должны иметь направление, параллельное или только большим диагоналям квадрата, или только малым.

Прямоугольной диметрией называется аксонометрическая проекция с равными показателями искажения по двум осям X и Z, а по оси Y показатель искажения в два раза меньше.

По ГОСТ 2.317-69 применяют в прямоугольной диметрии ось Z, расположенную вертикально, ось Х наклонную под углом 7°, а ось Y-под углом 41° к линии горизонта. Показатели искажения по осям X и Z равны 0,94, а по оси Y-0,47. Обычно применяют приведенные коэффициенты kx=kz=1, ky=0,5, т.е. по осям X и Z или по направлениям им параллельным, откладывают действительные размеры, а по оси Y размеры уменьшают в два раза.

Для построения осей диметрии пользуются способом, указанным на рисунке 63, который заключается в следующем:

На горизонтальной прямой, проходящей через точку О, откладывают в обе стороны восемь равных произвольных отрезков. Из конечных точек этих отрезков вниз по вертикали откладывают слева один такой же отрезок, а справа – семь. Полученные точки соединяют с точкой О и получают направление аксонометрических осей X и Y в прямоугольной диметрии.

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 63

Построение диметрической проекции шестиугольника

Рассмотрим построение в диметрии правильного шестиугольника, расположенного в плоскости П1 (рисунок 64).

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 64

На оси Х откладываем отрезок равный величине b, чтобы его середина находилась в точке О, а по оси Y – отрезок а, размер которого уменьшен вдвое. Через полученные точки 1 и 2 проводим прямые параллельно оси ОХ, на которых откладываем отрезки равные стороне шестиугольника в натуральную величину с серединой в точках 1 и 2. Полученные вершины соединяем. На рисунке 65а изображен в диметрии шестиугольник, расположенный параллельно фронтальной плоскости, а на рисунке 66б -параллельно профильной плоскости проекции.

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 65

Построение окружности в диметрии

В прямоугольной диметрии все окружности изображаются эллипсами,

Длина большой оси для всех эллипсов одинакова и равна 1,06d. Величина малой оси различна: для фронтальной плоскости равна 0,95d , для горизонтальной и профильной плоскостей – 0,35 d.

На практике эллипс заменяется четырехцентровым овалом. Рассмотрим построение овала, заменяющего проекцию окружности, лежащей в горизонтальной и профильной плоскостях (рисунок 66).

Через точку О – начало аксонометрических осей, проводим две взаимно перпендикулярные прямые и откладываем на горизонтальной линии величину большой оси АВ=1,06d , а на вертикальной линии величину малой оси СD=0,35d. Вверх и вниз от О по вертикали откладываем отрезки ОО1 и ОО2, равные по величине 1,06d. Точки О1 и О2 являются центром больших дуг овала. Для определения еще двух центров (О3 и О4) откладываем на горизонтальной прямой от точек А и В отрезки АО3 и ВО4, равные ¼ величины малой оси эллипса, то есть Большая и малая оси эллипса прямоугольной изометрии окружности равныd.

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 66

Затем, из точек О1 и О2 проводим дуги, радиус которых равен расстоянию до точек С и D, а из точек О3 и О4 – радиусом до точек А и В (рисунок 67).

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 67

Построение овала, заменяющего эллипс, от окружности, расположенной в плоскости П2, рассмотрим на рисунке 68. Проводим оси диметрии: Х, Y, Z. Малая ось эллипса совпадает с направлением оси Y, а большая перпендикулярна к ней. На осях Х и Z от начала откладываем величину радиуса окружности и получаем точки M, N, K, L, являющиеся точками сопряжения дуг овала. Из точек M и N проводим горизонтальные прямые, которые в пересечении с осью Y и перпендикуляром к ней дают точки О1, О2, О3, О4 – центры дуг овала (рисунок 68).

Из центров О3 и О4 описывают дугу радиусом R23 М, а из центров О1 и О2 — дуги радиусом R1= О2 N

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 68

Штриховка а прямоугольной диметрии

Линии штриховки разрезов и сечений в аксонометрических проекциях выполняются параллельно одной из диагоналей квадрата, стороны которого расположены в соответствующих плоскостях параллельно аксонометрическим осям (рисунок 69).

Большая и малая оси эллипса прямоугольной изометрии окружности равны
Рисунок 69

  1. Какие виды аксонометрических проекций вы знаете?
  2. Под каким углом расположены оси в изометрии?
  3. Какую фигуру представляет изометрическая проекция окружности?
  4. Как расположена большая ось эллипса для окружности, принадлежащей профильной плоскости проекций?
  5. Какие приняты коэффициенты искажения по осям X, Y, Z для построения диметрической проекции?
  6. Под какими углами расположены оси в диметрии?
  7. Какой фигурой будет являться диметрическая проекция квадрата?
  8. Как построить диметрическую проекцию окружности, расположенной во фронтальной проскости проекций?
  9. Основные правила нанесения штриховки в аксонометрических проекциях.


Тема 12НаверхЗаключение

© ФГБОУ ВПО Красноярский государственный аграрный университет

Видео:Диметрические проекции.Скачать

Диметрические проекции.

77. Прямоугольная изометрия

§ 77. Прямоугольная изометрия

Прямоугольная изометрия характеризуется тем, что коэффициенты искажения составляют 0,82. Их получают из соотношения (1).

Для прямоугольной изометрии из соотношения (1) получаем:

Зu 2 = 2, или и = v — w = (2/3) 1/2 = 0,82, т. е. отрезок координатной оси

длиной 100 мм в прямоугольной изометрии изобразится отрезком аксонометрической оси длиной 82 мм. При практических построениях пользоваться такими коэффициентами искажения не совсем удобно, поэтому ГОСТ 2.317—69 рекомендует пользоваться приведенными коэффициентами искажения:

Построенное таким образом изображение будет больше самого предмета в 1,22 раза, т. е. масштаб изображения в прямоугольной изометрии будет М А 1,22: 1.

Аксонометрические оси в прямоугольной изометрии располагаются под углом 120° друг к другу (рис. 157). Изображение окружности в аксонометрии представляет интерес, особен-

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Большая и малая оси эллипса прямоугольной изометрии окружности равны

Большая и малая оси эллипса прямоугольной изометрии окружности равны

но окружностей, принадлежащих координатным или им параллельным плоскостям.

В общем случае окружность проецируется в эллипс, если плоскость окружности расположена под углом к плоскости проекции (см. § 43). Следовательно, аксонометрией окружности будет эллипс. Для построения прямоугольной аксонометрии окружностей, лежащих в координатных или им параллельных плоскостях, руководствуются правилом: большая ось эллипса перпендикулярна аксонометрии той координатной оси, которая отсутствует в плоскости окружности.

В прямоугольной изометрии равные окружности, расположенные в координатных плоскостях, проецируются в равные эллипсы (рис. 158).

Размеры осей эллипсов при использовании приведенных коэффициентов искажения равны: большая ось 2а= 1,22d, малая ось 2b = 0,71d, где d — диаметр изображаемой окружности.

Диаметры окружностей, параллельных координатным осям, проецируются отрезками, параллельными изометрическим осям, и изображаются равными диаметру окружности: l 1 =l 2 =l 3 = d, при этом

l 1 ||x; l 2 ||y; l 3 ||z.

Эллипс, как изометрию окружности, можно построить по восьми точкам, ограничивающим его большую и малую оси и проекции диаметров, параллельных координатным осям.

В практике инженерной графики эллипс, являющийся изометрией окружности, лежащей в координатной или ей параллельной плоскости, можно заменить четырехцентровым овалом, имеющим такие же

Большая и малая оси эллипса прямоугольной изометрии окружности равны

оси: 2a = 1,22d и 2b = 0,71 d. На рис. 159 показано построение осей такого овала для изометрии окружности диаметра d.

Для построения аксонометрии окружности, расположенной в проецирующей плоскости или плоскости общего положения, нужно выделить на окружности некоторое число точек, построить аксонометрию этих точек и соединить их плавной кривой; получим искомый эллипс— аксонометрию окружности (рис. 160).

На окружности, расположенной в горизонтально проецирующей плоскости, взято 8 точек (1,2. 8). Сама окружность отнесена к натуральной системе координат (рис. 160, а).Проводим оси эллипса прямоугольной изометрии и, используя приведенные коэффициенты искажения, строим вторичную проекцию окружности 1 1 1. 5 1 1 по координатам х и у (рис. 160, б). Достраивая аксонометрические координатные ломаные для каждой из восьми точек, получаем их изометрию (1 1 , 2 1 , . 8 1 ). Соединяем плавной кривой изометрические проекции всех точек и получаем изометрию заданной окружности.

Изображение геометрических поверхностей в прямоугольной изометрии рассмотрим на примере построения стандартной прямоугольной изометрии усеченного прямого кругового конуса (рис. 161).

На комплексном чертеже изображен конус вращения, усеченный горизонтальной плоскостью уровня, расположенной на высоте z от нижнего основания, и профильной плоскостью уровня, дающей в се-

Большая и малая оси эллипса прямоугольной изометрии окружности равны

чении на поверхности конуса гиперболу с вершиной в точке А. Проекции гиперболы построены по отдельным ее точкам.

Отнесем конус к натуральной системе координат Oxyz. Построим проекции натуральных осей на комплексном чертеже и отдельно их изометрическую проекцию. Построение изометрии начинаем с построения эллипсов верхнего и нижнего оснований, которые являются изометрическими проекциями окружностей оснований. Малые оси эллипсов совпадают с направлением изометрической оси ОZ(см. рис. 158). Большие оси эллипсов перпендикулярны малым. Величины эллипсов осей определяются в зависимости от величины диаметра окружности (d — нижнего основания и d1— верхнего основания). Затем строят изометрию сечения конической поверхности профильной плоскости уровня, которая пересекает основание по прямой, отстоящей от начала координат на величину XA и параллельной оси Оу.

Изометрия точек гиперболы строится по координатам, замеряемым на комплексном чертеже, и откладываем без изменения вдоль соответствующих изометрических осей, так как приведенные коэффициенты искажения и = v = w = 1. Изометрические проекции точек гиперболы соединяем плавной кривой. Построение изображения конуса заканчивается проведением очерковых образующих касательной к эллипсам оснований. Невидимая часть эллипса нижнего основания проводится штриховой линией.

📹 Видео

Как начертить овал в горизонтальной плоскостиСкачать

Как начертить овал в горизонтальной плоскости
Поделиться или сохранить к себе: