Ab касательная к окружности ao 85 bo 36

Ab касательная к окружности ao 85 bo 36

Задание 6. Угол АСО равен 27°, где О — центр окружности. Его сторона СА касается окружности. Сторона СО пересекает окружность в точке В (см. рис.). Найдите величину меньшей дуги АВ окружности. Ответ дайте в градусах.

Ab касательная к окружности ao 85 bo 36

Так как AC является касательной к окружности, то радиус AO образует прямой угол с касательной, следовательно, треугольник AOC прямоугольный. Градусная мера дуги AB равна углу AOB. Найдем этот угол из условия, что сумма углов треугольника равна 180 градусов, получим:

Ab касательная к окружности ao 85 bo 36.

Видео:8 класс, 32 урок, Касательная к окружностиСкачать

8 класс, 32 урок, Касательная к окружности

Решение. Задание 6, Вариант 1

К окружности радиуса 36 проведена касательная из точки, удалённой от центра на расстояние, равное 85. Найдите длину касательной.

Ab касательная к окружности ao 85 bo 36

Касательная перпендикулярна радиусу, проведенному в точку касания.
Из прямоугольного треугольника AOM находим

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Это полезно

В нашей статье вы найдете всю необходимую теорию для решения задания №9 ЕГЭ по теме «Графики функций». Это задание появилось в 2022 году в вариантах ЕГЭ Профильного уровня.

Ab касательная к окружности ao 85 bo 36

Ab касательная к окружности ao 85 bo 36

Ab касательная к окружности ao 85 bo 36

Ab касательная к окружности ao 85 bo 36

Ab касательная к окружности ao 85 bo 36

  • Ab касательная к окружности ao 85 bo 36
  • Ab касательная к окружности ao 85 bo 36
  • Ab касательная к окружности ao 85 bo 36
  • Ab касательная к окружности ao 85 bo 36

Наш онлайн-курс по Физике

Все темы ЕГЭ с нуля

Можно не только читать, но и смотреть новые объяснения и разборы на нашем YouTube канале!

Пожалуйста, подпишитесь на канал и нажмите колокольчик, чтобы не пропустить новые видео

Задавайте свои вопросы в комментариях и оставляйте задачи, которые вы хотите, чтобы мы разобрали.

Мы обязательно ответим!

Мы заметили, что Вы регулярно пользуетесь нашими материалами для подготовки по физике.

Результат будет выше, если готовиться по отработанной методике.

У нас есть онлайн-курсы как для абитуриентов, так и для преподавателей.

Видео:Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Касательная к окружности

Ab касательная к окружности ao 85 bo 36

О чем эта статья:

Видео:Как решать задания на окружность ОГЭ 2021? / Разбор всех видов окружностей на ОГЭ по математикеСкачать

Как решать задания на окружность ОГЭ 2021? / Разбор всех видов окружностей на ОГЭ по математике

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Ab касательная к окружности ao 85 bo 36

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Ab касательная к окружности ao 85 bo 36

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Ab касательная к окружности ao 85 bo 36

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Ab касательная к окружности ao 85 bo 36

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Ab касательная к окружности ao 85 bo 36

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Ab касательная к окружности ao 85 bo 36

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Ab касательная к окружности ao 85 bo 36

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Ab касательная к окружности ao 85 bo 36

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Ab касательная к окружности ao 85 bo 36

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Ab касательная к окружности ao 85 bo 36

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Ab касательная к окружности ao 85 bo 36

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Ab касательная к окружности ao 85 bo 36

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

🌟 Видео

Разбор 3 варианта из сборника Ященко. Зонты | Математика ОГЭ 2023 | УмскулСкачать

Разбор 3 варианта из сборника Ященко. Зонты | Математика ОГЭ 2023 | Умскул

#59. Олимпиадная задача о касательной к окружности!Скачать

#59. Олимпиадная задача о касательной к окружности!

Построение касательной к окружностиСкачать

Построение касательной к окружности

ОГЭ 2021-2022.$ Новое задание второй части#Геометрическая задача на вычислениеСкачать

ОГЭ 2021-2022.$ Новое задание второй части#Геометрическая задача на вычисление

Окружность на ОГЭ по математике. Касательная к окружности.Скачать

Окружность на ОГЭ по математике. Касательная к окружности.

Задание 24 ОГЭ по математике #7Скачать

Задание 24 ОГЭ по математике #7

Построение касательной к окружности.Скачать

Построение касательной к окружности.

Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CDСкачать

Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD

№671. Через точку А проведены касательная АВ (В — точка касания) и секущая, которая пересекаетСкачать

№671. Через точку А проведены касательная АВ (В — точка касания) и секущая, которая пересекает

Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой РепетиторСкачать

Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой Репетитор

3 вариант ЕГЭ Ященко 2024 математика профильный уровень 🔴Скачать

3 вариант ЕГЭ Ященко 2024 математика профильный уровень 🔴

🔴 ВСЕ ЗАДАНИЯ 10 ИЗ ОТКРЫТОГО БАНКА | ОГЭ 2017 | ШКОЛА ПИФАГОРАСкачать

🔴 ВСЕ ЗАДАНИЯ 10 ИЗ ОТКРЫТОГО БАНКА | ОГЭ 2017 | ШКОЛА ПИФАГОРА

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

МЕРЗЛЯК-7 ГЕОМЕТРИЯ. СВОЙСТВА ОКРУЖНОСТИ. КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ. ПАРАГРАФ-20Скачать

МЕРЗЛЯК-7 ГЕОМЕТРИЯ. СВОЙСТВА ОКРУЖНОСТИ. КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ. ПАРАГРАФ-20

Задача на окружности из ОГЭ-2023!! Разбор за 30 секСкачать

Задача на окружности из ОГЭ-2023!! Разбор за 30 сек
Поделиться или сохранить к себе: