Иногда кажется, что некоторые математические темы изучены вдоль и поперек, например, треугольники. Ну что в этих треугольниках может быть нового и интересного? Тем не менее, даже такие, казалось бы, тривиальные объекты могут предстать под неожиданным углом. Давайте возьмем какую-нибудь простенькую задачку и попробуем ее решить. Постараемся найти треугольник с целочисленными сторонами, медианами и площадью. Мало ли, вдруг у нас получится.
- Как перечислить все треугольники?
- Причем тут алгебра?
- Почему это все бесполезно?
- В заключение
- Операции над множествами
- Собственное подмножество и булеан множества
- Свойства операций над множествами
- Дельта — буква, знак и его происхождение, применение в науке
- О происхождения знака
- Где применяется данный символ?
- Как ввести в «Ворд»?
- 🌟 Видео
Как перечислить все треугольники?
Даже несмотря на то, что некоторые множества содержат бесконечное количество элементов, они являются перечислимыми. Например, множество четных чисел может быть перечислено с помощью очень простого алгоритма — для любого n выдаем 2n и все. Во многом такая простота перечислимости некоторых множеств обусловлена тем, что элементы как-то упорядочены. Фактически, перечислить — значит пронумеровать, например, 2 — это первое четное число, 6 — третье. Но можем ли мы проделать то же самое с треугольниками? Если задавать треугольники с помощью кортежей вида a,b,c, то можем ли мы сказать, что треугольник 1,1,1 является первым, а треугольник 3,2,2 — четвертым или восьмым или еще каким-нибудь номером? Оказывается, можем.
Первое, что нужно придумать — это то как упорядочить множество треугольников. Первое, что приходит в голову — взять треугольник с какой-нибудь одной фиксированной стороной и выписать другие треугольники, стороны которого не меньше заданной. Например, так:
Как видим, первая сторона неизменна, а третья не превосходит суммы двух первых, на графике это будет выглядеть так:
Перед нами две ступенчатые функции, а значит мы можем задать стороны всех таких треугольников следующим образом:
Если заменить тройку на а на , то получим следующее:
Теперь любой треугольник можно изображать в виде точки на координатной плоскости, преобразуя стороны треугольников в координаты по двум простым формулам:
Чтобы перейти от координат к номерам достаточно воспользоваться канторовской нумерацией:
Или, если вместо координат использовать стороны треугольника:
Не знаю как вы, а я очень удивился, когда понял, что у каждого треугольника с целыми сторонами может быть свой номер. Есть что-то необычное в том, что подмножества треугольников, например, равнобедренные, могут выглядеть вот так:
Причем тут алгебра?
Очень похоже, что номера равнобедренных треугольников представляют собой множество парабол, нарисованных на одном графике. Так и есть, каждая из них может быть задана уравнением вида:
То же самое можно сказать и про многие другие подмножества треугольников. Например, вот так будут выглядеть треугольники с целыми, четными сторонами и одной целой медианой, проведенной к стороне :
На графике с координатами расположено множество кубических функций вида:
Не знаю, можно ли задать функции для всех кубических функций, но некоторые из них могут быть заданы, например, так:
Можно взять какую-то отдельную из них, например при j=0 и получить следующие формулы для координат треугольников:
Используя данные координаты можем задать функции для сторон и медианы:
Мы можем попробовать провернуть то же самое для треугольников, у которых две целые медианы:
Хоть этого и не видно на графике, но координаты треугольников с двумя целыми медианами задаются кубическими, квадратичными и линейными функциями. К сожалению, не могу привести все выкладки куда−то потерялись записи.
Если мы нарисуем график для треугольников с тремя целыми медианами, то получим следующее:
Таких треугольников очень мало, они очень сильно разрежены, но любопытно, что если найти хотя бы один такой треугольник, то все последующие могут быть заданы как:
Например, если взять треугольник 136, 170, 172 и умножить его стороны на 5, то мы снова получим треугольник с целыми сторонами и медианами.
Почему это все бесполезно?
Сначала кажется, что нумерация треугольников это шажок в сторону создания системы диофантовых уравнений, которые определяли бы стороны треугольников с целыми сторонами и медианами. Затем эти уравнения можно было бы подставить в формулу Герона и потом попытаться доказать возможность получения или неполучения треугольников с целой площадью. Но, к сожалению, нумерация треугольников абсолютно бесполезна в этом направлении. Все дело в том, что сама задача поиска треугольников с целыми сторонами и медианами связана с простыми числами. Сначала это кажется не совсем очевидным, но если следующее тождество является верным
то медиана не может быть целым числом. А это значит, что сама задача поиска треугольников с целыми сторонами и медианами наверняка может быть переведена на язык теории чисел, правда не знаю как.
В заключение
Сама идея того, что можно навести какой-никакой порядок в неупорядоченных множествах, очень любопытна. Например, можно попытаться каким-нибудь образом упорядочить матрицы из натуральных чисел, или графы определенного типа. Можно ли извлечь какую-то пользу от такого упорядочивания, это уже другой вопрос.
Видео:Множества и операции над нимиСкачать
Операции над множествами
Рассмотрим операции над множествами , которые позволяют из уже имеющихся множеств образовывать новые множества.
Для любых двух множеств и определены новые множества, называемые объединением, пересечением, разностью и симметрической разностью:
т.е. объединение и есть множество всех таких , что является элементом хотя бы одного из множеств ; пересечение и — множество всех таких , что — одновременно элемент и элемент ; разность — множество всех таких , что — элемент , но не элемент ; симметрическая разность — множество всех таких , что — элемент , но не элемент или — элемент , но не элемент .
Кроме того, фиксируя универсальное множество , мы можем определить дополнение множества следующим образом: . Итак, дополнение множества — это множество всех элементов универсального множества, не принадлежащих .
Полезно разобраться в том, как операции над множествами, введенные выше, соотносятся с логическими операциями. Пусть и , т.е. множество задано посредством характеристического предиката , а множество — посредством характеристического предиката .
Легко показать, что
Следующие процедуры получения новых множеств связаны с понятием подмножества. Говорят, что есть подмножество множества , если всякий элемент есть элемент . Для обозначения используют запись: . Говорят также, что содержится в или включено в , или включает (имеет место включение ). Считают, что пустое множество есть подмножество любого множества и, если фиксировано некоторое универсальное множество, каждое рассматриваемое множество есть его подмножество. Нетрудно проверить, что если и , то тогда и только тогда, когда высказывание тождественно истинно.
Сопоставляя определение подмножества и определение равенства множеств, мы видим, что множество равно множеству тогда и только тогда, когда есть подмножество и наоборот, т.е.
Формула (1.2) является основой для построения доказательств о равенстве множеств. Ее применение состоит в следующем. Чтобы доказать равенство двух множеств и , т.е. что , достаточно доказать два включения и «, т.е. доказать, что из предположения (для произвольного ) следует, что , и, наоборот, из предположения следует, что . Такой метод доказательства теоретико-множественных равенств называют методом двух включений. Примеры применения этого метода мы дадим позже.
Замечание. Равенство множеств и означает, что предикаты Р(х) и Q(x) эквивалентны, т.е. предикат Р(х) О Q<x) является тождественно истинным.
Видео:9 класс, 2 урок, Множества и операции над нимиСкачать
Собственное подмножество и булеан множества
Если , но , то пишут и называют строгим подмножеством (или собственным подмножеством ) множества , а символ — символом строгого включения.
Для всякого множества может быть образовано множество всех подмножеств множества . Его называют булеаном множества и обозначают
Для булеана используют также обозначения и .
Пример. а. Булеан множества состоит из четырех множеств
б. Булеан состоит из всех возможных, конечных или бесконечных, подмножеств множества . Так, и , вообще для любого множество , множество
Для булеана мы можем рассматривать произвольные его подмножества. Таким подмножеством, например, будет Одноэлементное множество , где — произвольное подмножество . Подчеркнем, что единственным элементом множества является, в свою очередь, некоторое множество. Вообще же образование булеана открывает путь для построения множеств, элементами которых являются множества, элементами которых, в свою очередь, являются некоторые множества, и т.д. Так можно определить множества и т.д.
Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
Свойства операций над множествами
Введенные выше операции над множествами обладают следующими свойствами:
Каждое из написанных выше равенств, верное для любых входящих в них множеств, часто называют теоретико-множественным тождеством. Любое из них может быть доказано методом двух включений. Докажем этим методом тождество 19.
Пусть . Тогда, согласно определению симметрической разности, . Это означает, что или . Если , то и , то есть и при этом . Если же , то и , откуда и . Итак, в любом случае из следует и , то есть . Таким образом, доказано, что
Покажем обратное включение .
Пусть . Тогда и . Из следует, что или . Если , то с учетом имеем , и поэтому . Если же , то опять-таки в силу получаем, что и . Итак, или , то есть . Следовательно,
Оба включения имеют место, и тождество 19 доказано.
Метод двух включений является универсальным и наиболее часто применяемым методом доказательства теоретико-множественных тождеств. Помимо метода двух включений для доказательства теоретико-множественных тождеств могут быть использованы другие методы, например метод характеристических функций.
Кроме того, теоретико-множественные тождества можно доказывать, используя ранее доказанные тождества для преобразования левой части к правой или наоборот. Такой метод доказательства часто называют методом эквивалентных преобразований.
Докажем этим методом тождество 22, пользуясь тождествами 1-19. Преобразуем левую часть к правой:
Видео:Бином Ньютона максимально простым языкомСкачать
Дельта — буква, знак и его происхождение, применение в науке
В данной статье поговорим о знаке Дельта — что он из себя представляет, в каких сферах применяется и для чего вообще используется. Также вы узнаете, как выглядит знак и как его можно вставить в текст в такой программе, какой является Ворд из Майкрософт Оффис.
Знак Дельта применяется во многих сферах жизнедеятельности, к примеру, в физике, текстовых редакторах, формулах и других сферах. Чаще всего именно при печати учебной литературы, докладов и других видов документов применяют знак дельта, который имеется в разных версиях ВОРД от Виндовс и других приложениях для создания документов текстового формата на ПК.
Видео:Математика это не ИсламСкачать
О происхождения знака
Появление символа связано с греческими языком, но сама буква появилась от стародревнего финийского языка, в котором именовалась – далет, что обозначало («вход в дверь»). Выглядела «далет» как перевернутый влево равнобедренный треугольник. В греческом алфавите, была такая буква. Позже эта буква дала начало всем известной буквы латинского набора – D , которая и поныне есть во многих алфавитных рядах разных государств мира, к примеру, английский алфавит ее содержит.
Буква, которая служит аналогом в русском алфавите – Д, а вот символ везде одинаков и изображается, как геометрическая фигура, а именно треугольник с равными сторонами (Δ). Эта версия является заглавной, прописная версия выглядит немного иначе, представляя собой кружок с хвостиком, похожий на обозначение в физике плотности (δ).
Видео:A.2.7 МножестваСкачать
Где применяется данный символ?
Кроме использования в правописании греков, символ начали активно применять в математике, геометрии, алгебре, физике, химии и географии.
Поговорим отдельно о применении дельта в каждых научных сферах:
- География. Дельта подразумевает в географическом смысле начальную часть реки, океана или моря, имеет смысловое, нежели символическое, буквенное понятие и восприятие. Почему именно область впадения реки принято так называть? Все просто, дело в форме данной области, если сделать снимок сверху, то отток реки будет иметь форму правильного треугольника, а символ дельта, как раз представляет собой такой геометрический объект. Ярчайшим представителем с выраженной дельтой является река Нил (Египет), которая впадает в Средиземное море, а также Амазонка с ее впадением в океан Атлантики.
- Применение в математике, алгебре, геометрии. Очень часто знак применяют в математической сфере для таких целей, как: 1) Приращение аргумента подразумевает под дельтой измененную переменную. К примеру, сложим 5 и 4 в итоге получим число 9. Дельтой будет являться увеличение 5 на 4. 2) Применение в теории вероятности по системе Лапласа. Такой метод преподают в ВУЗах, а не школах и в нем используют такой знак. 3) А также символ применяется при обозначении прямой и обратной матриц. 4) Дельта, буква, применяемая в написании формул (как письменным методом, так и через компьютер);
- Также в математике применяют прописную версию дельта. А именно, такой символ обозначает производную от числа. Обозначение выглядит следующим образом — δy/δx. 2) Используется для описания бесконечной функции-дельта. Бесконечная функция возможна, если все значения аргумента равны нулю. 3) При помощи δ еще обозначают символику Кронекера, символ равен всегда 1, при условии того, что все его индексы равны, либо нулевые при заданных условиях.
- Физика, астрономия, космогония. Граничащие меж собой научные дисциплины, все особо важные и по-своему интересные, в каждой из дисциплин можно встретить знак дельта. В физике связь всех производных осуществляется при помощи формул с интеграцией. К примеру, формула скорости, которая выглядит следующим образом — δS к δt , является отношением одной части к другой. В данном случае расстояние, которое преодолел объект, соотносится со временем, затраченном на преодоление. Вторая производная – это ускорение, где тоже важна взаимосвязь одной составляющей формулы к другой. В космологии и астрономии применяют формулы, расчеты с данным символом, только в прописном варианте.
Видео:Треугольник ПаскаляСкачать
Как ввести в «Ворд»?
Для вставки символа заходим в верхние меню редактора и ищем колонку «Вставка», наводим на колонку курсором мыши без нажатия правой кнопки. Высвечивается несколько наименования разделов, необходимо нажать на «Символ» , где можно путем перелистывания за счет колеса мыши искать необходимый знак, либо в строке поиска выбрать категорию (статистические или математические) и найти знак. Прописной или заглавный символ высветится в рабочей области окна вставки , вам только стоит нажать правой кнопкой мыши «вставить» или «окей».
🌟 Видео
Бином Ньютона. 10 класс.Скачать
МИШЕНЬКА ЭКЗАМЕНУЕТ МЕНЯ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ! А ЕЩЁ - ВСЕМ ПРИВЕТ ИЗ ВОСТОЧНОЙ СИБИРИ!!!!!!Скачать
Пересечение множеств. Объединение множеств. 5 класс.Скачать
Бином Ньютона. Практическая часть. 10 класс.Скачать
Множества. Операции над множествами. 10 класс алгебраСкачать
Совершенно иной подход к математике [Veritasium]Скачать
Удивительный треугольник Паскаля | Лекции по математике – Яков Ерусалимский | Научпоп | НаукаPROСкачать
Дискретная математика. Лекция 1: Множества и отношенияСкачать
Множество. Элементы множества. 5 класс.Скачать
Теорема, которую не могли доказать 350 лет — за 900 секунд // Великая теорема ФермаСкачать
Треугольник ПаскаляСкачать
3.2 Бинарные отношения | Роман Попков | ИТМОСкачать