Замечательные точки треугольника центр вписанной окружности

Замечательные точки треугольника центр вписанной окружности

Замечательные точки треугольника центр вписанной окружности

Замечательные точки треугольника центр вписанной окружности

Видео:Замечательные точки треуг-ка. 8 класс.Скачать

Замечательные точки треуг-ка. 8 класс.

Траектории замечательных точек треугольника, вписанного в окружность

Замечательные точки треугольника центр вписанной окружности

Автор работы награжден дипломом победителя III степени

Замечательные точки в треугольнике — это следующие четыре точки в треугольнике, сохранившие еще по традиции название «замечательных»: 1) центр описанной около треугольника окружности — точка пересечения серединных перпендикуляров к сторонам треугольника; 2) центр вписанной в треугольник окружности — точка пересечения биссектрис его; 3) ортоцентр треугольника — точка пересечения высот его; 4) центроид треугольника — точка пересечения медиан его; центроид треугольника также называется центром масс треугольника.

Рассмотрим следующую задачу: даны две фиксированные точки окружности A и B и «переменная» точка окружности C . По какой траектории движутся точки пересечения медиан, биссектрис, высот треугольника ABC , когда точка C «пробегает» окружность?

Цели исследования: изучить свойства замечательных точек треугольника, исследовать траектории замечательных точек треугольника, вписанного в окружность, в программе «Живая геометрия».

Гипотеза:множеством точек пересечения медиан является окружность с центром в точке пересечения медиан треугольника AOB и радиусом, втрое меньшим радиуса исходной окружности.

Объект исследования: траектории замечательных точек треугольника.

Предмет исследования: геометрические построения замечательных точек.

Множество точек пересечения медиан

Нарисуем окружность, вписанный треугольник ABC, его медианы, достаточно двух (рис. 1). «Покрутим» точку C по окружности и проследим за точкой пересечения медиан M. Траектория похожа на окружность.

Рисунок 1. Траектория точек пересечения медиан

Докажем утверждение: множеством точек пересечения медиан будет окружность с центром в точке пересечения медиан треугольника AOB и радиусом, втрое меньшим радиуса исходной окружности.

Доказательство. Заметим, что поскольку точки A и B фиксированы, то и К − середина отрезка AB − также фиксирована. По теореме о медианах точка M делит отрезок CK в отношении 2 : 1, считая от точки C. То есть получается гомотетия с центром K и коэффициентом 1/3. Образом окружности будет также окружность радиусом втрое меньше. Центр окружности O при этой гомотетии перейдёт в центр новой окружности. Это будет точка, делящая отрезок OK в отношении 2 : 1, считая от точки O, т. е. точка пересечения медиан треугольника AOB.

Справедливо и обобщение: если «пустить» точку C не по окружности, а по произвольной кривой l, то точка пересечения медиан M также опишет кривую, гомотетичную l с центром K и коэффициентом 1/3.

Множество точек пересечения высот

Рисуем окружность, вписанный треугольник ABC, его высоты. При перемещении вершины С замечательная точка опять описывает окружность. Она проходит через точки A и B. Радиус такой же, как у исходной окружности. Получается окружность, симметричная данной относительно AB (рис. 2).

Рисунок 2. Траектория точек пересечения высот

Прежде чем доказывать это утверждение, заметим, что, если взять треугольник ABC, то его высоты пересекутся в точке H. А если взять треугольник ABH, то его высоты пересекутся в точке C.

Докажем это. AH и BH становятся сторонами. Им перпендикулярны отрезки AC и BC − значит, они будут высотами треугольника ABH.

Докажем, что траекторией точки пересечения высот является окружность, симметричная данной относительно АВ.

Рассмотрим вспомогательную задачу. В треугольнике ABC угол C обозначим через χ. Найдем угол между высотами AH и BH. Рассматривая четырёхугольник с двумя прямыми углами и вершиной C, легко подсчитать, что искомый угол равен 180 – χ. По теореме о вписанном угле угол C при движении точки по дуге окружности фиксирован. Значит, фиксирован и угол AHB. Значит, точка H также движется по дуге окружности. При пересечении прямой AB угол C меняется с χ на 180- χ, а угол AHB тем самым меняется с 180- χ на χ. Поскольку оба угла опираются на одну и ту же дугу, то и получаем две симметричные окружности.

Таким образом, точка пересечения высот треугольника симметрична точке описанной окружности относительно стороны.

Множество точек пересечения биссектрис. Теорема о трилистнике

Строим чертёж аналогично предыдущим задачам (рис. 3).

Рисунок 3. Траектория точек пересечения биссектрис

Докажем, что множество точек L есть множество точек двух дуг окружностей.

Доказательство. Аналогично предыдущему разделу рассмотрим вспомогательную задачу. В треугольнике ABC угол C равен χ. Найдем угол между биссектрисами AL и BL.

Сумма углов A и B треугольника ABC равна 180- χ. Значит, сумма половин этих углов равна .

Тем самым в треугольнике ALB на угол L приходится .

На каждой из двух дуг окружности угол С фиксирован по теореме о вписанном угле, значит, и угол ALB фиксирован и описывает две дуги окружности (рис. 4). Интересно, что в отличие от случая высот эти две дуги не составят окружность.

Рисунок 4. Угол ALB фиксирован и описывает две дуги окружности.

Определить радиусы у этих дуг. Проведём биссектрису CL. Она пересечёт окружность в точке P (или Q), так как равные вписанные углы ACP и PCB должны опираться на равные дуги, поэтому дуги AP и BP равны. Получаем, что точки A, B и L лежат на окружности с центром в точке P. Тем самым, AP = BP = LP. Значит, радиус одной дуги равен AP, а другой – AQ (рис. 3).

Теорема (о трилистнике). Пусть в треугольнике ABC точка L – точка пересечения биссектрис, P – точка пересечения биссектрисы угла С с описанной окружностью. Тогда AP = BP = LP.

Доказательство. Докажем, что в треугольнике ALP AP = LP (рис. 5).

Рисунок 5. Доказательство теоремы о трилистнике

Для этого докажем, что угол LAP равен углу ALP. Угол LAP состоит из двух вписанных углов. Один из них опирается на дугу SB, а другой −на дугу PB. Значит, угол LAP равен полусумме градусных мер этих дуг. Теперь заметим, что дуга SB равна дуге CS, а дуга BP равна дуге AP (так как CP и AS − биссектрисы соответствующих углов). Но угол ALP между хордами AS и CP равен полусумме градусных мер дуг CS и AP1, т. е. равен углу LAP.

Исследуя задачу о траекториях замечательных точек треугольника, вписанного в окружность, были изучены свойства замечательных точек, определены траектории в программе динамической геометрии «Живая геометрия», доказана гипотеза.

Действительно, множеством точек пересечения медиан является окружность с центром в точке пересечения медиан треугольника AOB и радиусом, втрое меньшим радиуса исходной окружности. Траекторией точек пересечения высот является окружность, симметричная данной относительно AB, а траекторией точек пересечения биссектрис есть множество точек двух дуг окружностей. Попутно доказано вспомогательное утверждение – теорема о трилистнике.

1. «Геометрия». Учебник для 7-9 классов Л.С. Атанасян и другие. М.: «Просвещение», 2018.

2.Факультативный курс по математике 7-9. Составитель И. Л. Никольская. М.: «Просвещение», 1991.

3. Маркушевич А.И. Замечательные кривые, М., 2003.

4.Савин А.П. Энциклопедия юного математика. Электронная библиотека «Альтернативная наука», 2008.

5.Сгибнев А.И. Исследовательские задачи для начинающих. МЦНМО, 2015.

Видео:Урок по теме ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА ГЕОМЕТРИЯ 8 КЛАСССкачать

Урок по теме ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА ГЕОМЕТРИЯ 8 КЛАСС

Замечательные точки и линии треугольников. 9-й класс

Класс: 9

Презентация к уроку

Загрузить презентацию (529 кБ)

Цели:

  • Познакомить с замечательными точками и линиями треугольника;
  • познакомить с методами доказательства свойств замечательных точек и линий треугольника;
  • повторить и обобщить материал по теме «Треугольник».

Задачи развивающие:

  • Развитие умения устанавливать закономерности;
  • развитие умения формулировать гипотезы, опровергать ошибочные и доказывать истинные;
  • развитие умения составлять алгоритм действий и действовать по алгоритму;
  • развитие математической интуиции;
  • развитие графической культуры и математической речи.

Задачи воспитательные:

  • Повышение познавательного интереса;
  • расширение математического кругозора;
  • развитие навыка конструктивного группового взаимодействия независимо от многообразия проявлений индивидуальности;
  • воспитание чувства ответственности;
  • развитие умения выступать перед аудиторией

Тип урока: изучение нового материала.

Метод: проблемно-исследовательский.

Форма: групповая.

Ход урока

1. Организационный момент, объявление темы занятия (слайд 1).

2. Повторение.

Треугольник – фигура удивительная. Она удивляет своей простотой, лаконичностью и в то же время своей универсальностью. Вспомните сколько раз, чтобы решить задачу или доказать теорему мы прибегали к разбиению многоугольника на треугольники.

Треугольник – первая геометрическая фигура, изученная нами в курсе геометрии. И сегодня мы поговорим о новых для вас свойствах треугольника, а треугольник в свою очередь поможет вам повторить очень много изученных в курсе планиметрии тем.

Вспоминаем изученные замечательные точки треугольника:

  • Центр вписанной окружности (точка пересечения биссектрис треугольника);
  • Центр описанной окружности (точка пересечения серединных перпендикуляров к сторонам треугольника);
  • Точка пересечения высот треугольника (ортоцентр);
  • Точка пересечения медиан треугольника.

Также вспоминаем алгоритм построения с помощью циркуля и линейки
каждой из этих точек.

Каждая группа получает индивидуальное задание (приложение 1, задание 1).

Задание № 1. (группа 1)

С помощью циркуля и линейки построить окружность, описанную около треугольника (треугольник остроугольный, тупоугольный и прямоугольный).

Задание № 1. (группа 2)

С помощью циркуля и линейки построить окружность, вписанную в треугольник (треугольник остроугольный, тупоугольный и прямоугольный)

Задание № 1. (группа 3)

С помощью циркуля и линейки построить точку пересечения высот треугольника (треугольник остроугольный, тупоугольный и прямоугольный)

Задание № 1. (группа 4)

С помощью циркуля и линейки построить точку пересечения медиан треугольника (треугольник остроугольный, тупоугольный и прямоугольный)

(Для экономии времени, группы получают заготовленные на альбомных листах изображения треугольников; все построения выполняются фломастерами, циркуль – «козья ножка» также с фломастером).

После выполнения каждая группа демонстрирует свои результаты и комментирует построения. При необходимости учитель вносит дополнения (слайды 3 – 6).

3. Свойство точек, симметричных ортоцентру относительно сторон треугольника.

Как вы думаете, все ли закономерности, связанные с треугольником мы изучили? (приложение 1, задание 2).

Задание № 2.

  1. Постройте произвольную окружность.
  2. Впишите в него произвольный остроугольный треугольник АВС.
  3. Постройте высоты AA1, BB1, CC1. Пусть H — точка пересечения высот.
  4. Постройте точку А2, симметричную точке Н относительно прямой, содержащей сторону ВС.
  5. Постройте точку В2, симметричную точке Н относительно прямой, содержащей сторону АС.
  6. Постройте точку С2, симметричную точке Н относительно прямой, содержащей сторону АВ.

Какое свойство вы заметили?

Сформулируйте свойство точек, симметричных ортоцентру относительно сторон треугольника.

Задание № 2.

  1. Постройте произвольную окружность.
  2. Впишите в него произвольный тупоугольный треугольник АВС.
  3. Постройте высоты AA1, BB1, CC1. Пусть H — точка пересечения высот.
  4. Постройте точку А2, симметричную точке Н относительно прямой, содержащей сторону ВС.
  5. Постройте точку В2, симметричную точке Н относительно прямой, содержащей сторону АС.
  6. Постройте точку С2, симметричную точке Н относительно прямой, содержащей сторону АВ.

Какое свойство вы заметили?

Сформулируйте свойство точек, симметричных ортоцентру относительно сторон треугольника.

Проверяем выполнение задания. Формулируем свойство точек, симметричных ортоцентру относительно сторон треугольника. (Слайды 7, 9)

4. Продолжаем «открывать» новые точки и линии, связанные с геометрией треугольника.

1. А верите ли вы, что, если на сторонах треугольника построить равносторонние треугольники и около них описать окружности, то эти окружности пересекутся в одной точке? (слайд 11).

2. А верите ли вы, что, основания перпендикуляров, опущенных из любой точки окружности на три стороны вписанного в нее треугольника, лежат на одной прямой? (слайд 14).

3. А верите ли вы, что, в треугольнике середины его сторон, середины отрезков, соединяющих его вершины с его ортоцентром, и основания его высот лежат на одной окружности? (слайд 17).

4. А верите ли вы, что, в треугольнике центр описанной окружности, ортоцентр и центр тяжести лежат на одной прямой? (слайд 21).

5. Докажем рассмотренные нами свойства треугольника.

Каждая группа получает карточку с заданием и копию соответствующего слайда на электронном носителе (для экономии времени компьютеры, за которыми будут работать ребята, должны быть подготовлены заранее, фрагмент презентации загружен и выведен на экран). Карточка содержит формулировку задачи, ее доказательство и чертеж. Необходимо подготовить выступление по теме и привести доказательство утверждений, отмеченных значком. (Приложение 1. Задание 3).

Задание № 3 (группа 1)

На сторонах треугольника построены равносторонние треугольники и около них описаны окружности. Докажите, что эти окружности пересекутся в одной точке, называемой точкой Торричелли? Воспользуйтесь подсказкой и докажите утверждение, отмеченное значком «?».

Замечательные точки треугольника центр вписанной окружности

Задание № 3 (группа 2)

Докажите, что основания перпендикуляров, опущенных из любой точки окружности на три стороны вписанного в нее треугольника, лежать на одной прямой (прямая Симпсона)? Воспользуйтесь подсказкой и докажите утверждение, отмеченное значком «?».

Замечательные точки треугольника центр вписанной окружности

Задание № 3 (группа 3)

Докажите, в треугольнике середины его сторон, середины отрезков, соединяющих его вершины с его ортоцентром, и основания его высот лежат на одной окружности (окружность Эйлера)?

Воспользуйтесь подсказкой и докажите утверждения, отмеченные значком «?».

Замечательные точки треугольника центр вписанной окружности

Задание № 3 (группа 4)

Докажите, что в треугольнике центр описанной окружности, ортоцентр и центр тяжести лежат на одной прямой (прямая Эйлера)? (слайд 23)

Воспользуйтесь подсказкой и докажите утверждения, отмеченные значком «?».

Замечательные точки треугольника центр вписанной окружности

Проверяем выполнение задания. Каждая группа «представляет» свою замечательную точку или линию и доказывает связанное с ней утверждение (слайды 12 — 13, 15-16, 18-20, 22-24).

В качестве «сувенира», после доказательства каждой теоремы можно посмотреть соответствующие «созвездия» на «звездном небе» (слайды 28-31, к которым можно перейти с помощью кнопки «астроном», появляющейся, когда доказательство закончено).

Во время выступления слушатели должны отметить, какие теоремы из курса планиметрии за 7-9 классы используются для доказательства каждого утверждения и заполняют таблицу (Приложение 3).

После выступления группа строит соответствующую точку или прямую, выбирая наиболее подходящий чертеж. (Приложение 2.).

Учитель контролирует, при необходимости помогает выполнить построения. По завершении этого этапа работы еще раз проговариваем алгоритм построения.

6. Точки Фейербаха. (Слайды 25, 32)

Ну, и это еще не все!

Вернемся на минуту к окружности Эйлера.

Эта окружность, найденная в XVIII веке великим ученым А.Эйлером, была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали его Карл Фейербах. Он был родным братом известного философа Людвига Фейербаха. Дополнительно К.Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого треугольника. Это точки ее касания с четырьмя окружностями специального вида.

Одна из этих окружностей вписанная, остальные три – вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек К1, К2, К3 и К – называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек.

Ну, и это еще не все!

7. Доказательство свойства точек, симметричных ортоцентру относительно сторон треугольника.

Теперь, вспомнив практически весь материал по теме «Треугольник» и не только (таблица 1), рассмотрев методы доказательств четырех теорем, связанных с геометрией треугольника, мы можем вернуться к вашему сегодняшнему «открытию» и попробовать доказать его самостоятельно.

Доказать свойство точек, симметричных ортоцентру относительно сторон треугольника.

(Группы работают самостоятельно при необходимой помощи учителя)

Наиболее успешное доказательство представляется классу, остальные группы вносят дополнения и замечания (слайды 8, 10, 26, 27)

Ну, и это еще не все!

8. Следствия:

1. Вернемся еще раз к окружности Эйлера: 1) радиус окружности Эйлера равен половине радиуса описанной окружности ∆АВС (слайд 33); 2) ∆АВH, ∆АСH, ∆ВСH имеют ту же окружность Эйлера, что и ∆АВС (слайд 34).

2. Вернемся к точке Торричелли – т.Ферма: 1) отрезки AA1. BB1 и СС1 пересекаются в точке Торричелли и равны между собой; и 2) если точка Торричелли М лежит внутри треугольника, то сумма расстояний от точки М до вершин треугольника MА+MВ+MС – минимальна (слайд 35).

(А в каком случае т.Торичелли не лежит внутри треугольника?)

3. Вернемся к прямой Симпсона: 1) точки F1, E1, D1 — симметричные точке Р относительно сторон ∆АВС, лежат на одной прямой F1D1; 2) прямая F1D1 проходит через ортоцентр Н ∆АВС; 3) прямая Симпсона делит отрезок РН пополам: РК = КН (слайд 36).

4. Вернемся к прямой Эйлера: 1) точка пересечения медиан делит отрезок ОН в отношении 1:2, считая от точки О; 2) центр окружности Эйлера т.N – лежит на прямой Эйлера и делит отрезок OH пополам (слайды 37).

А еще есть Точка Нагеля, точка Жергонна, точка Брокара, точка Лемуана…

9. Подведение итогов урока (обобщение нового материала, анализ работы групп).

Домашнее задание:

  1. Выясните, как расположены точки, симметричные ортоцентру относительно середин сторон треугольника. Сформулируйте теорему и докажите ее.
  2. Подготовьте экспресс-сообщение об ученом, чьим именем была названа точка или линия, свойство которой вы сегодня доказывали (Торричелли, Симпсон, Эйлер, Фейербах).

Литература:

  1. Е.Д. Куланин, С.Н.Федин «Геометрия треугольника в задачах», Москва, книжный дом «Либроком», 2009 г.
  2. И.М.Смирнова, В.А.Смирнов «Геометрия. Нестандартные и исследовательские задачи», учебное пособие 7 -11, Москва, Мнемозина, 2004 г.
  3. «Энциклопедический словарь юного математика», Москва, «Педагогика», 1989г.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Исследовательский проект Замечательные точки треугольника

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

«Снятие эмоционального напряжения
у детей и подростков с помощью арт-практик
и психологических упражнений»

Сертификат и скидка на обучение каждому участнику

Замечательные точки треугольника центр вписанной окружности

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Kurchavov_Alexandr-1.doc

Глава1. Исторические сведения о замечательных точках треугольника

1.2. Медианы треугольника

1.3. Биссектрисы треугольника

1.4. Высоты в треугольнике

1.5. Серединные перпендикуляры к сторонам треугольника

Глава 2. Исследование замечательных точек треугольника.

Список использованной литературы

Геометрия — это раздел математики, который рассматривает различные фигуры и их свойства. Геометрия начинается с треугольника. Вот уже два с половиной тысячелетия треугольник является символом геометрии; но он не только символ, треугольник — атом геометрии.

В своей работе я рассмотрю свойства точек пересечения биссектрис, медиан и высот треугольника, расскажу о замечательных их свойствах и линиях треугольника.

К числу таких точек, изучаемых в школьном курсе геометрии, относятся:

а) точка пересечения биссектрис (центр вписанной окружности);

б) точка пересечения серединных перпендикуляров (центр описанной окружности);

в) точка пересечения высот (ортоцентр);

г) точка пересечения медиан (центроид).

Актуальность: расширить свои знания о треугольнике, свойствах его замечательных точек.

Цель: исследование треугольника на его замечательные точки, изучение их классификаций и свойств.

1. Изучить необходимую литературу

2. Изучить классификацию замечательных точек треугольника

3. Уметь строить замечательные точки треугольника.

4. Обобщить изученный материал для оформления буклета.

умение находить замечательные точки в любом треугольнике, позволяет решать геометрические задачи на построение.

Глава 1. Исторические сведения о замечательных точках треугольника

В четвертой книге «Начал» Евклид решает задачу: «Вписать круг в данный треугольник». Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга. Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга. В «Началах» не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово «ортос» означает «прямой», «правильный»). Это предложение было, однако, известно Архимеду, Паппу, Проклу.

Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, и начиная с XVIII века они были названы «замечательными» или «особенными» точками треугольника.

Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – «геометрии треугольника» или «новой геометрии треугольника», одним из родоначальников которой стал Леонард Эйлер. В 1765 году Эйлер доказал, что в любом треугольнике ортоцентр, барицентр и центр описанной окружности лежат на одной прямой, названной позже «прямой Эйлера».

Треугольник — геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки — вершины треугольника, отрезки — стороны треугольника.

Замечательные точки треугольника центр вписанной окружности В А, В, С — вершины

АВ, ВС, СА — стороны

С каждым треугольником связаны четыре точки:

Точка пересечения медиан;

Точка пересечения биссектрис;

Точка пересечения высот.

Точка пересечения серединных перпендикуляров;

1.2. Медианы треугольника

Медина треугольника ― отрезок , соединяющий вершину треугольника с серединой противоположной стороны (Рисунок 1). Точка пересечения медианы со стороной треугольника называется основанием медианы.

Замечательные точки треугольника центр вписанной окружности

Рисунок 1. Медианы треугольника

Построим середины сторон треугольника и проведем отрезки, соединяющую каждую из вершин с серединой противолежащей стороны. Такие отрезки называются медианой.

И вновь мы наблюдаем, что и эти отрезки пересекаются в одной точке. Если мы измерим длины получившихся отрезков медиан, то можно проверить еще одно свойство: точка пересечения медиан делит все медианы в отношении 2:1, считая от вершин. И еще, треугольник, который опирается на острие иглы в точке пересечения медиан, находится в равновесии! Точка, обладающая таким свойством, называется центром тяжести (барицентр). Центр равных масс иногда называют центроидом. Поэтому свойства медиан треугольника можно сформулировать так: медианы треугольника пересекаются в центре тяжести и точкой пересечения делятся в отношении 2:1, считая от вершины.

1.3. Биссектрисы треугольника

Биссектрисой треугольника называется отрезок биссектрисы угла, проведенный от вершины угла до её пересечения с противолежащей стороной. У треугольника существуют три биссектрисы, соответствующие трём его вершинам (Рисунок 2).

Замечательные точки треугольника центр вписанной окружности

Рисунок 2. Биссектриса треугольника

В произвольном треугольнике ABC проведем биссектрисы его углов. И вновь при точном построении все три биссектрисы пересекутся в одной точке D. Точка D – тоже необычная: она равноудалена от всех трех сторон треугольника. В этом можно убедиться, если опустить перпендикуляры DA 1, DB 1 и DC1 на стороны треугольника. Все они равны между собой: DA1=DB1=DC1.

Если провести окружность с центром в точке D и радиусом DA 1, то она будет касаться всех трех сторон треугольника (то есть будет иметь с каждым из них только одну общую точку). Такая окружность называется вписанной в треугольник. Итак, биссектрисы углов треугольника пересекаются в центре вписанной окружности.

1.4. Высоты в треугольнике

Высота треугольника — перпендикуляр , опущенный из вершины треугольника на противоположную сторону или прямую, совпадающую с противоположной стороной. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника у тупоугольного треугольника (Рисунок 3).

Замечательные точки треугольника центр вписанной окружностиЗамечательные точки треугольника центр вписанной окружностиЗамечательные точки треугольника центр вписанной окружности

Рисунок 3. Высоты в треугольниках

Если в треугольнике построить три высоты, то все они пересекутся в одной точке H. Эта точка называется ортоцентром. (Рисунок 4).

С помощью построений можно проверить, что в зависимости от вида треугольника ортоцентр располагается по – разному:

у остроугольного треугольника – внутри;

у прямоугольного – на гипотенузе;

у тупоугольного – снаружи.

Замечательные точки треугольника центр вписанной окружности

Рисунок 4. Ортоцентр треугольника

Таким образом, мы познакомились еще с одной замечательной точкой треугольника и можем сказать, что: высоты треугольника пересекаются в ортоцентре.

1.5. Серединные перпендикуляры к сторонам треугольника

Серединный перпендикуляр к отрезку — это прямая, перпендикулярная данному отрезку и проходящая через его середину.

Начертим произвольный треугольник ABC и проведем серединные перпендикуляры к его сторонам. Если построение выполнено точно, то все перпендикуляры пересекутся в одной точке – точке О. Эта точка равноудалена от всех вершин треугольника. Другими словами, если провести окружность с центром в точке О, проходящую через одну из вершин треугольника, то она пройдет и через две другие его вершины.

Окружность, проходящая через все вершины треугольника, называется описанной около него. Поэтому установленное свойство треугольника можно сформулировать так: серединные перпендикуляры к сторонам треугольника пересекаются в центре описанной окружности (Рисунок 5).

Замечательные точки треугольника центр вписанной окружностиРисунок 5. Треугольник вписанный в окружность

🌟 Видео

ГЕОМЕТРИЯ 8 класс: 4 замечательные точкиСкачать

ГЕОМЕТРИЯ 8 класс: 4 замечательные точки

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

Планиметрия | замечательные точки треугольников | вписанная окружность | формулыСкачать

Планиметрия | замечательные точки треугольников | вписанная окружность | формулы

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Четыре замечательные точки треугольникаСкачать

Четыре замечательные точки треугольника

Четыре замечательные точки треугольника. Видеоурок 20. Геометрия 8 классСкачать

Четыре замечательные точки треугольника. Видеоурок 20. Геометрия 8 класс

Замечательные точки треугольникаСкачать

Замечательные точки треугольника

Видео Урок 4 Замечательные Точки Теругольника 1Скачать

Видео Урок  4 Замечательные Точки Теругольника 1

Замечательные точки треугольника + доказательства. ЕГЭ 2023, задание 16Скачать

Замечательные точки треугольника + доказательства. ЕГЭ 2023, задание 16

8 класс, 38 урок, Вписанная окружностьСкачать

8 класс, 38 урок, Вписанная окружность

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Замечательные точки треугольникаСкачать

Замечательные точки треугольника

Замечательные точки треугольника. Remarkable points of the triangle.Скачать

Замечательные точки треугольника. Remarkable points of the triangle.

Почему геометрия — это красиво?Скачать

Почему геометрия —  это красиво?

Геометрия 8 класс. Замечательные точки треугольникаСкачать

Геометрия 8 класс. Замечательные точки треугольника

Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #ShortsСкачать

Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #Shorts
Поделиться или сохранить к себе: