Замечательной точкой треугольника не является

Ззамечательные точки треугольника — свойства, применение и примеры решения

Замечательные точки треугольника не просто так описываются таким прилагательным. Для многих учеников, а начинают знакомиться с этим понятием в 8 классе, эта тема кажется наиболее интересной и простой в курсе геометрии, поэтому многочисленные теоремы и свойства запоминаются достаточно просто.

Итак, какие же четыре точки называются замечательными? Перечислим их:

точку пересечения медиан треугольника;

точку пересечения биссектрис треугольника;

точку пересечения высот треугольника;

точку пересечения серединных перпендикуляров сторон треугольника.

Все точки обладают своими особенностями и свойствами, про всех есть свои теоремы и следствия из них. Кроме того, существует свойство, которое справедливо сразу для четырёх этих точек. Вне зависимости от того, медиана ли это, биссектриса или высота, все они пересекаются в одной точке.

Замечательные точки характерны не только для треугольников. Например, в трапеции так же четыре замечательные точки.

Теперь рассмотрим основные положения, связанные с замечательными точками треугольника.

Видео:Урок по теме ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА ГЕОМЕТРИЯ 8 КЛАСССкачать

Урок по теме ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА ГЕОМЕТРИЯ 8 КЛАСС

Точка пересечения медиан треугольника

Из курса геометрии известно определение медианы треугольника.

Замечательной точкой треугольника не является

На данном рисунке она обозначена прямой m, которая исходит из вершины А и заканчивается точкой М, являющейся центром стороны ВС.

Теперь сделаем чертёж треугольника, на котором укажем замечательную точку пересечения медиан.

Для начала постройте абсолютно любой треугольник и обозначьте его буквами А, В и С.

На отрезке АВ отметьте центр С1, на стороне ВС центр А1, на АС центр В1.

Проведите 3 медианы из вершин. Из угла А – медиана АА1,из угла В — медиана ВВ1, из угла С — медиана СС1.

Должно получиться так, как показано на рисунке: три проведённые линии пересекаются в одной точке G (что является их свойством).

Изучим следующее свойство точки пересечения трёх медиан треугольника.

Отрезки медианы треугольника, разделённой замечательной точкой, относятся друг к другу как 2:1. Проследим это свойство на примере используемого нами рисунка:

Замечательной точкой треугольника не является

Видео:ГЕОМЕТРИЯ 8 класс: 4 замечательные точкиСкачать

ГЕОМЕТРИЯ 8 класс: 4 замечательные точки

Точка пересечения биссектрис треугольника

Прежде чем мы приступим к изучению следующей точки, рассмотрим теорему о биссектрисе, проведённой из вершины неразвёрнутого угла, и докажем её.

Видео:Замечательные точки треуг-ка. 8 класс.Скачать

Замечательные точки треуг-ка. 8 класс.

Четыре замечательные точки треугольника

Вы будете перенаправлены на Автор24

В треугольнике есть так называемые четыре замечательные точки: точка пересечения медиан. Точка пересечения биссектрис, точка пересечения высот и точка пересечения серединных перпендикуляров. Рассмотрим каждую из них.

Видео:Пересечение биссектрис треугольника в одной точке, Геометрия 7 классСкачать

Пересечение биссектрис треугольника в одной точке,  Геометрия 7 класс

Точка пересечения медиан треугольника

О пересечении медиан треуголника: Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.

Доказательство.

Рассмотрим треугольник $ABC$, где $_1, _1, _1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 1).

Замечательной точкой треугольника не является

Рисунок 1. Медианы треугольника

По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $angle ABB_1=angle BB_1A_1, angle BAA_1=angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда

Аналогично доказывается, что

Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Точка пересечения биссектрис треугольника

О пересечении биссектрис треугольника: Биссектрисы треугольника пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где $AM, BP, CK$ его биссектрисы. Пусть точка $O$ — точка пересечения биссектрис $AM и BP$. Проведем из этой точки перпендикуляры к сторонам треугольника (рис. 2).

Замечательной точкой треугольника не является

Рисунок 2. Биссектрисы треугольника

Готовые работы на аналогичную тему

Для доказательства нам потребуется следующая теорема.

Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.

По теореме 3, имеем: $OX=OZ, OX=OY$. Следовательно, $OY=OZ$. Значит точка $O$ равноудалена от сторон угла $ACB$ и, значит, лежит на его биссектрисе $CK$.

Видео:Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

Точка пересечения серединных перпендикуляров треугольника

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство.

Пусть дан треугольник $ABC$, $n, m, p$ его серединные перпендикуляры. Пусть точка $O$ — точка пересечения серединных перпендикуляров $n и m$ (рис. 3).

Замечательной точкой треугольника не является

Рисунок 3. Серединные перпендикуляры треугольника

Для доказательства нам потребуется следующая теорема.

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов данного отрезка.

По теореме 3, имеем: $OB=OC, OB=OA$. Следовательно, $OA=OC$. Значит точка $O$ равноудалена от концов отрезка $AC$ и, значит, лежит на его серединном перпендикуляре $p$.

Видео:Математика это не ИсламСкачать

Математика это не Ислам

Точка пересечения высот треугольника

Высоты треугольника или их продолжения пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где $_1, _1, _1$ его высоты. Проведем через каждую вершину треугольника прямую, параллельную противоположной вершине стороне. Получаем новый треугольник $A_2B_2C_2$ (рис. 4).

Замечательной точкой треугольника не является

Рисунок 4. Высоты треугольника

Так как $AC_2BC$ и $B_2ABC$ параллелограммы с общей стороной, то $AC_2=AB_2$, то есть точка $A$ — середина стороны $C_2B_2$. Аналогично, получаем, что точка $B$ — середина стороны $C_2A_2$, а точка $C$ — середина стороны $A_2B_2$. Из построения мы имеем, что $_1bot A_2B_2, _1bot A_2C_2, _1bot C_2B_2$. Следовательно, $_1, _1, _1$ — серединные перпендикуляры треугольника $A_2B_2C_2$. Тогда, по теореме 4, имеем, что высоты $_1, _1, _1$ пересекаются в одной точке.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Пример задачи на использование 4 замечательных точек треугольника

Серединные перпендикуляры к сторонам $AB$ и $AC$ треугольника $ABC$ пересекаются в точке $D$ стороны $BC$. Докажите, что

а) точка $D$ — середина стороны $BC$.

б) $angle A=angle B+angle C$

Решение.

Замечательной точкой треугольника не является

а) По теореме 4, все серединные перпендикуляры пересекаются в точке $D$. Следовательно, $D$ — основание серединного перпендикуляра к стороне $BC$. Значит точка $D$ — середина стороны $BC$.

б) Так как $X$ и $D$ — середины сторон, то $XD$ — средняя линия треугольника. Тогда, по теореме о средней линии треугольника $XD||AC$. Значит,$angle A=angle DXB$, как соответственные углы. Значит, $angle A=^0$. Тогда$angle B+angle C=^0-angle A=^0-^0=^0=angle A$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 29 03 2021

Видео:8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.

Проект на тему: «Замечательные точки треугольника»

Замечательной точкой треугольника не является

Целью данной работы является изучение и обобщение знаний о треугольнике.

В разработке проекта приведена историческая справка об открытиях в области замечательных точек треугольника – выбрана самая краткая и существенная информация касательно истории развития геометрии замечательных точек треугольника;

Изложен геометрический материал по замечательным точкам треугольника, как изучаемым, так и не изучаемым в школьном курсе геометрии.

Дан ряд задач с решениями, многие проиллюстрированы чертежами. Задачи включающие в себя решение и разбор тем по замечательным точкам треугольника в школьной программе раскрываются не полностью и большая часть остается неизученной. Такие задачи для учеников являются сложными и непривычными, в течение изучения данной темы по школьной программе не вырабатываются необходимые навыки по решению таких задач. Данная тема может частично раскрыться лишь на внеклассных занятиях или с помощью самостоятельного обучения.

Результатом проекта является мультимедийный продукт (презентация).

Просмотр содержимого документа
«Проект на тему: «Замечательные точки треугольника»»

Замечательные точки треугольника

Учитель МКОУ Данильской ООШ Павловского района

3.1 Элементы треугольника

3.2 Виды треугольников
4. Замечательные точки треугольника, изучаемые в школе
4.1 Точка пересечения высот (ортоцентр)
4.2. Точка пересечения медиан (центроид)

4.3 Точка пересечения биссектрис (инцентр)

4.4 Точка пересечения серединных перпендикуляров (медиатрисс)

4.5 Свойства треугольников (равнобедренный, равносторонний, прямоугольный треугольники)
5. Замечательные точки треугольника, не изучаемые в школе
5.1. Прямая Эйлера

5.2 Изогональные точки

5.3 Окружность Эйлера (окружность девяти точек)

5.4 Точка Жергона

5.5 Точка Нагеля

5.7 Точка Лемуана

5.8 Точка Брокара

5.9 Прямая Симсона

6.Задачи по замечательным точкам треугольника
7.Список использованной литературы

Целью данной работы является изучение и обобщение знаний о треугольнике.

Исторически геометрия начиналась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является как бы символом геометрии. Сегодня школьная геометрия только тогда может стать интересной и содержательной, только тогда может стать собственно геометрией, когда в ней появляется глубокое и всестороннее изучение треугольника.
Удивительно, но треугольник, несмотря на свою кажущуюся простоту, является неисчерпаемым объектом изучения – никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника.
Значит, изучение школьной геометрии не может осуществляться без глубокого изучения геометрии треугольника; ввиду многообразия треугольника как объекта изучения – а, значит, и источника различных методик его изучения – необходимо подбирать и разрабатывать материал для изучения геометрии замечательных точек треугольника. Причем при подборе этого материала не следует ограничиваться только лишь замечательными точками, предусмотренными в школьной программе Государственным образовательным стандартом, такими как центр вписанной окружности (точка пересечения биссектрис), центр описанной окружности (точка пересечения серединных перпендикуляров), точка пересечения медиан, точка пересечения высот. Но для глубокого проникновения в природу треугольника и постижения его неисчерпаемости необходимо иметь представления как можно о большем числе замечательных точек треугольника. Это совсем не означает, что всем школьникам на уроках геометрии необходимо преподавать материал, например, про точку Ферма или точку Жергонна; но любой школьник должен иметь принципиальную возможность прикоснуться к этому кладезю идей – либо через факультативные занятия, либо самостоятельно.

Помимо неисчерпаемости треугольника как геометрического объекта, необходимо отметить удивительнейшее свойство треугольника как объекта изучения: изучение геометрии треугольника можно начинать с изучения любого его свойства, взяв его за основу; затем методику изучения треугольника можно построить так, чтобы на эту основу нанизывать все остальные свойства треугольника. Другими словами, с чего бы ни начинать изучение треугольника, всегда можно дойти до любых глубин этой удивительной фигуры. Но тогда – как вариант – можно начинать изучение треугольника с изучения его замечательных точек.
В виду вышесказанного, в данном проекте заострим внимание не столько на том, что есть в любых школьных учебниках по геометрии, сколько на том, чего в них нет – это, прежде всего, замечательные точки треугольника, не изучаемые в школе.
Все вышесказанное обосновывает актуальность разработки темы данного проекта.
Целью настоящего проекта является адаптация геометрического материала о замечательных точках треугольника к преподаванию в курсе геометрии 8 класса как в рамках школьной программы, так и на факультативных занятиях.

2. Историческая справка

С одной стороны, история математики – это непрерывный процесс открытий; с другой стороны, открытия в математике, касающиеся геометрии треугольника, были сделаны по преимуществу в Античный период, в период позднего Средневековья и начала Нового времени. Поэтому здесь рассмотрим развитие математики в эти периоды.
Свойства треугольника были хорошо изучены еще в древности греками. В знаменитых «Началах» Евклида доказывается, что центром окружности, описанном около треугольника, является точка пересечения серединных перпендикуляров к его сторонам. Архимед, определяя положение центра тяжести треугольной пластинки, установил, что он лежит на каждой из трех медиан.
Известно, что в «Началах» Евклида излагается материал о центрах вписанной и описанной окружностей, точек пересечения медиан, высот и биссектрис. Есть основания полагать, что греки до Евклида обладали этими знаниями, а Евклид их просто систематизировал и включил в «Начала» для полноты изложения материала.
Принято считать, что вся современная наука оформилась в 17 веке.
Начало открытий замечательных точек треугольника, не изучаемых в школе, положил в 17 веке Джованни Чева (Ceva) (1648 — 1734) – итальянский математик. Основной заслугой Чевы является построение учения о секущих, которое положило начало новой – синтетической геометрии; оно изложено в сочинении «О взаимнопересекающихся прямых» (De lineis rectis se inuicem secantibus statica constructio, Mediolani, 1678). Во-первых, его теорема (знаменитая теорема Чевы) сама по себе представляет ценность, во-вторых, ее применение позволило открыть свойства замечательных точек треугольника, известных как точки Нагеля и Жергонна.

Следующим продвижением в истории математики является доказательство Готфридом Лейбницем теоремы о пересечении медиан в 1701 году в Берлине. Воспользовавшись этим результатом, Эйлер в докладе Российской Академии наук изложил факт, известный ныне как свойство прямой Эйлера.
В 19 веке появляется публикация молодого французского математика Ферма расчетов, связанных с минимальным суммарным расстоянием до вершин треугольника.
Уже в конце 19 века Брокар, Нагель и Торричелли, изучая труды Ферма и применяя теорему Чевы, замечают неопубликованные ранее никем некоторые свойства точки Ферма.
Примерно в это же время – вторая половина 19 века – итальянский математик Наполеон Фьеорованти применяет оригинальную идею: по аналогии с «Пифагоровыми штанами», т.е. с построением «равносторонних прямоугольников» на сторонах прямоугольного треугольника, Фьеорованти попробовал построить на сторонах прямоугольного треугольника «равносторонние треугольники». Затем им были сделаны два обобщения этого построения: во-первых, равносторонние треугольники были построены на сторонах произвольного треугольника; во-вторых, была подмечена взаимосвязь внутреннего и внешнего треугольников Наполеона. Таким образом, название «треугольники Наполеона» этому построению было дано по аналогии с построениями Пифагора, и к императору Наполеону Бонапарту эти треугольники никакого отношения не имеют.

3.1 ЭЛЕМЕНТЫ ТРЕУГОЛЬНИКА

Т Замечательной точкой треугольника не являетсяреугольник – многоугольник с тремя сторонами, или замкнутая ломаная линия с тремя звеньями, или фигура, образованная тремя отрезками, соединяющими три точки, не лежащие на одной прямой.

Основные элементы треугольника ABC

Вершины – точки A, B, и C;

Стороны – отрезки a = BC, b = AC и c = AB, соединяющие вершины;

Углы – α , β, γ образованные тремя парами сторон. Углы часто обозначают так же, как и вершины, – буквами A, B и C.

3.2 Виды треугольников

Существует две классификации треугольников: по углам и сторонам.

К Замечательной точкой треугольника не являетсялассификация по углам

Определение. Треугольник называется

остроугольным, если все три его

угла — острые, то есть меньше 90°.

Определение. Треугольник называется тупоугольным, если один из его

углов -тупой, то есть больше 90°.

Определение. Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой, две другие стороны называются катетами.

Классификация по сторонам

Определение. Треугольник называется равнобедренным, если у него две стороны равны. Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника.

Определение. Треугольник, у которого все стороны равны, называется равносторонним или правильным.

4. Замечательные точки треугольника, изучаемые в школе.
Поясним сначала смысл выражения «замечательные точки треугольника». Всем известно, что биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанной в этот треугольник окружности. Также в одной точке пересекаются медианы и высоты треугольника, серединные перпендикуляры к его сторонам. Все точки, получающиеся в результате пересечения перечисленных наборов из трех прямых, назовем замечательными – замечательное в них, прежде всего то, что три различные прямые на плоскости, как правило, пересекаются в трех различных точках, а не в одной.
Приведем некоторый теоретический материал школьного курса геометрии по замечательным точкам треугольника.

Замечательной точкой треугольника не являетсяКаждый треугольник имеет три медианы, три биссектрисы и три высоты, причем каждая тройка прямых пересекается в одной точке. Эти точки, вообще говоря, отличны друг от друга, однако для правильного треугольника совпадают с его центром.

4.1 Точка пересечения высот (ортоцентр)

Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на противоположную сторону или ее продолжение.

О Замечательной точкой треугольника не являетсясновное свойство высот. Три высоты в треугольнике пересекаются в одной точке и эту точку называют ортоцентром треугольника. В остроугольном треугольнике ортоцентр лежит внутри треугольника, в прямоугольном — совпадает с вершиной прямого угла, а в тупоугольном треугольнике — находится вне треугольника на пересечении продолжений высот.

4.2 Точка пересечения медиан (центроид)

Медианой треугольника называют отрезок, соединяющий его вершину с серединой противолежащей стороны
Основное свойство медиан: в любом треугольнике медианы пересекаются в одной точке и делятся этой точкой в отношении 2 : 1, считая от вершины.
Точка пересечения медиан треугольника имеет простой физический смысл: она является его центром масс. Представим, что треугольник нарисован на жесткой, но практически невесомой пластине и в его вершинах укреплены три тяжелых шарика одинаковой массы. Из физики известно, что в плоскости треугольника найдется такая точка М, что если подвесить за нее пластинку с шариками, то вся система будет пребывать в равновесии, то есть, как бы ее ни расположить, она будет оставаться неподвижной в том положении, в котором мы ее отпустим. Мы будем обозначать эту точку буквой М. Ее также называют центроидом или центром масс треугольника. Отметим несколько свойств медианы:
Медиана разбивает треугольник на два равновеликих, то есть имеющих одинаковую площадь.
Три медианы разбивают треугольник на шесть равновеликих.
Отрезки, соединяющие точку пересечения медиан с вершинами треугольника, разбивают треугольник на три равновеликие части.

4.3 Точка пересечения биссектрис (инцентр)

Замечательной точкой треугольника не являетсяБиссектрисой треугольника называют отрезок прямой, делящей угол при вершине на две равные части.
Основное свойство биссектрис: точка пересечения – центр вписанной окружности.
Биссектриса внутреннего угла треугольника есть геометрическое место точек, равноудаленных от сторон этого угла. Две биссектрисы обязательно пересекутся в одной точке .
Эта точка будет равноудалена от сторон угла А и от сторон угла В и, следовательно, от сторон угла С. Это означает, что точка лежит также и на третьей биссектрисе и равноудалена от всех трех сторон треугольника – то есть является центром вписанной в него окружности. Эту точку называют инцентром.
Биссектрисы внутренних углов треугольника пересекаются в центре вписанной окружности.
Свойство биссектрисы внутреннего угла треугольника: биссектриса внутреннего угла треугольника делит противоположную сторону на части, пропорциональные заключающим ее сторонам.
Любой треугольник имеет единственную описанную окружность, центр которой лежит на пересечении серединных перпендикуляров к его сторонам.

4 Замечательной точкой треугольника не является.4 Точка пересечения серединных перпендикуляров (медиатрисс)

Серединный перпендикуляр к стороне треугольника есть геометрическое место точек, равноудаленных от ее концов. Серединные перпендикуляры к двум сторонам обязательно пересекаются в одной точке.
Эта точка будет равноудалена от концов каждой из двух сторон, т.е. от всех вершин треугольника. Это и означает, что она является центром описанной около треугольника окружности. Ясно также, что она лежит и на третьем серединном перпендикуляре, т.е. все три перпендикуляра пересекаются в одной точке.

4.5 Свойства треугольников

Замечательной точкой треугольника не является

Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой.

Также равны биссектрисы, медианы и высоты, проведённые из этих углов.

Биссектриса, медиана и высота, проведенные к основанию совпадают между собой.

Центры вписанной и описанной окружностей лежат на этой линии.

У Замечательной точкой треугольника не являетсяглы, противолежащие равным сторонам, всегда острые (следует из их равенства).

Каждая из высот является одновременно биссектрисой и медианой.

Центры описанной и вписанной окружностей совпадают.

5 Замечательной точкой треугольника не является. Замечательные точки треугольника,

В Замечательной точкой треугольника не являетсяо всяком треугольнике точка пересечения медиан, точка пересечения высот (или их продолжений) и точка пересечения серединных перпендикуляров к сторонам треугольника лежат на одной прямой (эта прямая называется прямой Эйлера)

5.2 Изогональные точки

Прямые, симметричные высотам относительно соответствующих биссектрис, проходят через центр описанной окружности, то есть содержат ее радиусы.

Справедливо также следующее: если три прямые, проведенные из вершин треугольника, пересекаются в одной точке, то и прямые, симметричные им относительно соответствующих биссектрис, тоже проходят через одну и ту же точку.

Подобные две точки называются изогональными. Таким образом, ортоцентр треугольника (синяя точка) изогонален центру описанной окружности.

5.3 Окружность девяти точек

Замечательной точкой треугольника не является

Середины сторон треугольника (точки A, B и С), основания его высот (точки D, E и F) и середины отрезков от вершин до ортоцентра (точки M, K и H) лежат на одной окружности

Ее радиус равен половине радиуса описанной окружности (отрезок NL), а центр О лежит посередине отрезка NS, где N — центр описанной окружности, а точка

S — ортоцентр треугольника. Такая окружность называется окружностью девяти точек, или окружностью Эйлера, или окружностью Фейербаха — по имени Карла Фейербаха, провинциального учителя математики из Германии, родного брата философа Людвига Фейербаха.

Замечательной точкой треугольника не является

5.4 Точка Жергонна

Три отрезка, соединяющие вершины треугольника с точками, в которых вписанная в него окружность касается соответственно противоположных вершинам сторон, пересекаются в одной точке J. Она называется точкой Жергонна

5 Замечательной точкой треугольника не является.5 Точка Нагеля

Отрезки, соединяющие каждую из вершин треугольника с точкой, в которой противоположная сторона касается соответствующей вневписанной окружности, пересекаются в одной точке N – точке Нагеля. Она интересна тем, что отрезок NI, где I – центр вписанной окружности, проходит через центр тяжести M (точка пересечения медиан) треугольника и делится им в отношении NM : MI = 2 : 1

П Замечательной точкой треугольника не являетсяостроим на сторонах произвольного треугольника ABC вне его равносторонние треугольники ABC’, BCA’, CAB’. Тогда шесть кривых — три окружности, описанные вокруг этих правильных треугольников, и прямые AA’, BB’, CC’ пересекаются в одной точке X. Если все углы треугольника ABC не превосходят 120°, то X лежит в треугольнике ABC и является точкой Ферма S. В этом случае углы между отрезками AS, BS и CS равны между собой и, значит, равны 120°. Более того, длины отрезков AA’, BB’ и CC’, называемых линиями Симпсона, тоже равны между собой и равны AS + BS + CS. Если один из углов треугольника ABC больше 120°, то X лежит вне треугольника ABC, а точка Ферма S совпадает с вершиной тупого угла. Точка S — точка Ферма, то есть точка, сумма расстояний от которой до всех вершин треугольника ABC минимальна

5 Замечательной точкой треугольника не является.7 Точка Лемуана

Отразив относительно биссектрисс треугольника соответствующие медианы, получаем новые замечательные линии — симедианы.

Точка L их пересечения называется точкой Лемуана треугольника. Она является центроидом треугольника KMN, образованного ее проекциями на стороны исходного треугольника.

5.8 Точка Брокара

Замечательной точкой треугольника не является

Если на сторонах треугольника АВС внешним образом построить подобные ему треугольники СА1В, САВ1 и С1АВ (углы при первых вершинах всех четырех треугольников равны и т.д.), то прямые АА1, ВВ1 и СС1 пересекутся в точке Р, которую называют точкой Брокара. Одна из особеностей этой точки состоит в том, что Замечательной точкой треугольника не являетсяРАС = Замечательной точкой треугольника не являетсяРСВ = Замечательной точкой треугольника не являетсяРВА.

5.9 Прямая Симсона

Замечательной точкой треугольника не является

Основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой – прямой Симсона.

Верно и обратное утверждение: если основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой, то точка P лежит на описанной окружности треугольника.

6. Задачи по замечательным точкам треугольника

Внутри треугольника ABC взята точка M. Докажите, что один из углов ABM, BCM и CAM не превосходит 30 o .

Решение. Пусть P — первая точка Брокара треугольника ABC. Точка M лежит внутри (или на границе) одного из треугольников ABP, BCP и CAP. Если, например, точка M лежит внутри треугольника ABP, то Замечательной точкой треугольника не является

В окружность вписан равнобедренный треугольник с основанием a и углом при основании Замечательной точкой треугольника не является. Кроме того, построена вторая окружность, касающаяся первой окружности и основания треугольника, причём точка касания является серединой основания. Найдите радиус второй окружности. Если решение не единственное, рассмотрите все случаи.

Диаметр одной из искомых окружностей — высота данного треугольника, а другой — разность между диаметром описанной окружности и диаметром первой искомой окружности.

П Замечательной точкой треугольника не являетсяусть CK — диаметр окружности, описанной около равнобедренного треугольника ABC (AC = BC, AB = a, ∠A = Замечательной точкой треугольника не являетсяB =α). Тогда середина M основания AB принадлежит этому диаметру, а CM и MK — диаметры искомых окружностей.

Пусть r и x — радиусы искомых окружностей. Тогда

r = 1/2CM = 1/2AM ∙tgα = Замечательной точкой треугольника не являетсяtgα ,

x = Замечательной точкой треугольника не являетсяMK = Замечательной точкой треугольника не являетсяAM ∙ctg Замечательной точкой треугольника не являетсяAKM = ctgα .

Ответ: Замечательной точкой треугольника не являетсяtg Замечательной точкой треугольника не является, Замечательной точкой треугольника не являетсяctg Замечательной точкой треугольника не является.

З Замечательной точкой треугольника не являетсяадача 3.

Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.

Опустим перпендикуляры DE, DF и DG к прямым, содержащим стороны AB, BC и треугольника ABC. Тогда ∠DBE = ∠DBC = ∠ACB. Следовательно, прямоугольные треугольники EBD и FBD равны по гипотенузе и острому углу, т.е. DE = DF. Кроме того, ∠BDC = ∠BCD, поскольку ΔCBD — равнобедренный. Также угол BDC равен углу DCG как накрест лежащий при секущей CD, следовательно, ∠BCD = ∠BCG. Тогда DF = DG, но это и значит, что D является центром вневписанной окружности треугольника.

З Замечательной точкой треугольника не являетсяадача 4.

Пусть r — радиус окружности, касающейся гипотенузы и продолжения катетов прямоугольного треугольника со сторонами a, b, c. Докажите, что r = Замечательной точкой треугольника не является.

Четырёхугольник, образованный прямыми, содержащими катеты, и радиусами, проведёнными в точки касания с продолжениями катетов, — квадрат.

Обозначим вершины треугольника, противолежащие сторонам a, b, c, через A, B, C (C — вершина прямого угла), а точки касания — через A1, B1, C1 соответственно. Если O — центр данной окружности, то OA1CB1 — квадрат со стороной, равной r. Поэтому

Следовательно, r = Замечательной точкой треугольника не является.

Докажите, что точки, симметричные точке пересечения высот (ортоцентру) треугольника ABC относительно прямых, содержащих его стороны, лежат на описанной окружности этого треугольника.

П Замечательной точкой треугольника не являетсяодсказка

Пусть H1 – точка пересечения продолжения высоты AA1 треугольника ABC с описанной окружностью. Докажите, что треугольник HBH1 – равнобедренный.

Для прямоугольного треугольника утверждение очевидно.
Пусть ABC – остроугольный треугольник, H – точка пересечения его высот, H1 – точка пересечения продолжения отрезка AH за точку H с описанной окружностью треугольника ABC. Тогда ∠BH1H = ∠BH1A = ∠ACB = ∠BHH1 (стороны последних двух углов взаимно перпендикулярны).
Поэтому треугольник HBH1 – равнобедренный. Следовательно, перпендикуляр BC к его стороне HH1 проходит через середину отрезка HH1, то есть точка H1 симметрична точке H относительно прямой BC.

Построить треугольник по стороне c, медиане к стороне a ma и медиане к стороне b mb.

Предположим, что треугольник ABC построен. Пусть M — точка пересечения медиан AA1 и BB1. Тогда AM = 2ma/3 и BM = 2mb/3. Треугольник ABM можно построить по длинам сторон AB = c, AM и BM. Затем на лучах AM и BM откладываем отрезки AA1 = ma и BB1 = mb. Вершина C является точкой пересечения прямых AB1 и A1B.

С помощью циркуля и линейки постройте треугольник, если на плоскости отмечены три точки: O — центр описанной окружности, P — точка пересечения медиан и H — основание одной из высот этого треугольника.
Решение

Предположим, что нужный треугольник ABC построен (рис.1), BH — его высота, Q — точка пересечения высот. Тогда точки O , P и Q лежат на одной прямой (прямая Эйлера треугольника ABC ), точка P — между O и Q , PQ = 2OP .
Отсюда вытекает следующее построение. На продолжении отрезка OP за точку P откладываем отрезок PQ , вдвое больший данного отрезка OP . Через данную точку H проводим прямую, перпендикулярную QH . Пусть M — проекция точки O на эту прямую. Точка B пересечения прямых MP и QH — вершина искомого треугольника.
С центром в точке O строим окружность радиуса OB . Эта окружность пересекает прямую HM в вершинах A и C искомого треугольника.

Задача 8. (Точка Брокара)

Пусть P — точка Брокара треугольника ABC; R1, R2 и R3 — радиусы описанных окружностей треугольников ABP, BCP и CAP. Докажите, что R1R2R3 = R 3 , где R — радиус описанной окружности треугольника ABC.

По теореме синусов R1 = AB/2 sin APB, R2 = BC/2 sin BPC и R3 = CA/2 sin CPA. Ясно также, что sin APB = sin A, sin BPC = sin B и sin CPA = sin C.

Задача 9. (точка Лемуана)

Докажите, что точка Лемуана треугольника ABC с прямым углом C является серединой высоты CH.

Пусть L, M и N — середины отрезков CA, CB и CH. Так как ∆BAC Замечательной точкой треугольника не являетсяCAH, то ∆BAM Замечательной точкой треугольника не являетсяCAN, а значит, Замечательной точкой треугольника не являетсяBAM = Замечательной точкой треугольника не являетсяCAN. Аналогично Замечательной точкой треугольника не являетсяABL = Замечательной точкой треугольника не являетсяCBN.

Можно предложить ряд других задач по теме «Замечательные точки треугольника». Задачи можно взять на сайте http://www.problems.ru/view_by_subject_new.php?parent=324

Заключение
В разработке проекта приведена историческая справка об открытиях в области замечательных точек треугольника – выбрана самая краткая и существенная информация касательно истории развития геометрии замечательных точек треугольника;

Изложен геометрический материал по замечательным точкам треугольника, как изучаемым, так и не изучаемым в школьном курсе геометрии.

Дан ряд задач с решениями, многие проиллюстрированы чертежами.
Задачи включающие в себя решение и разбор тем по замечательным точкам треугольника в школьной программе раскрываются не полностью и большая часть остается неизученной. Такие задачи для учеников являются сложными и непривычными, в течение изучения данной темы по школьной программе не вырабатываются необходимые навыки по решению таких задач. Данная тема может частично раскрыться лишь на внеклассных занятиях или с помощью самостоятельного обучения.

Результатом проекта является мультимедийный продукт (презентация).

7.Список использованной литературы

1. Атанасян Л. С. Геометрия: Учеб. для общеобразоват. учреждений. – М. : Просвещение, 2008.

2.Большая математическая энциклопедия / Якушева Г.М. и др. – М.: Филол.

О-во «СЛОВО»: ОЛМА-ПРЕСС, 2005. – 639 с.: ил.

3.Возникновение и развитие математической науки: Кн. Для учителя. – М.: Просвещение, 1987. – 159 с.: ил.

4.За страницами учебника алгебры: Кн. для учащихся 7 – 9 кл. сред. Шк. — М.: Просвещение, 1990. – 224 с.: ил.

5.Панов В. Ф. Математика древняя и юная/ Под ред. В. С. Зарубина. – 2-е изд., испр. – М.: Изд-во МГТУ им. Н. Э. Баумана, 2006. – 648с.

6.Энциклопедия для детей. Т.11.Математика / Глав. ред, М. Д. Аксёнова. – М.: Аванта+,1998. – 688 с.: ил.

7.Энциклопедия. Мудрость тысячелетий. – М.: ОЛМА-ПРЕСС, 2004. –

📽️ Видео

Геометрия. 8 класс. Замечательные точки треугольника /22.10.2020/Скачать

Геометрия. 8 класс. Замечательные точки треугольника /22.10.2020/

🔥 Свойства МЕДИАНЫ #shortsСкачать

🔥 Свойства МЕДИАНЫ #shorts

3 свойства биссектрисы #shortsСкачать

3 свойства биссектрисы #shorts

Замечательные точки треугольникаСкачать

Замечательные точки треугольника

ОГЭ. Геометрия. Из открытого банка заданий ОГЭ (ФИПИ). Медианы №1Скачать

ОГЭ.  Геометрия.  Из открытого банка заданий ОГЭ (ФИПИ).  Медианы №1

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать

8 класс, 37 урок, Теорема о пересечении высот треугольника

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

ПОСТРОЕНИЕ БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ПОСТРОЕНИЕ БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэ
Поделиться или сохранить к себе: