Замечательное свойство высот треугольника

Определение и свойства высоты треугольника

В данной публикации мы рассмотрим определение высоты треугольника, продемонстрируем, как она выглядит в зависимости от вида треугольника, а также перечислим ее основные свойства.

Видео:8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать

8 класс, 37 урок, Теорема о пересечении высот треугольника

Определение высоты треугольника

Высота треугольника – это перпендикуляр, который опущен из вершины фигуры на противоположную сторону.

Основание высоты – точка на противоположной стороне треугольника, которую пересекает высота (или точка пересечения их продолжений).

Обычно высота обозначается буквой h (иногда как ha – это означает, что она проведена к стороне a).

Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Высота в разных видах треугольников

В зависимости от вида фигуры высота может:

  • проходить внутри треугольника (в остроугольном △);
    Замечательное свойство высот треугольника
  • проходить за рамками треугольника (в тупоугольном △);
    Замечательное свойство высот треугольника
  • являться одним из катетов (в прямоугольном △), за исключением высоты, проведенной к гипотенузе.
    Замечательное свойство высот треугольника

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Свойства высоты треугольника

Свойство 1

Все три высоты в треугольнике (или их продолжения) пересекаются в одной точке, которая называется ортоцентром (точка O на чертежах ниже).

  • в остроугольном треугольнике;
    Замечательное свойство высот треугольника
  • в тупоугольном треугольнике;
    Замечательное свойство высот треугольника
  • в прямоугольном треугольнике.
    Замечательное свойство высот треугольника
    Вершина A является, в т.ч., точкой пересечения высот.

Свойство 2

При пересечении двух высот в треугольнике, образуются следующие подобные треугольники:

  • ABE∼△CBF: по двум углам (∠ABC – общий, ∠AEB и ∠CFB являются прямыми).
    Замечательное свойство высот треугольника
  • AFG∼△CEG: по двум углам (∠AFG и ∠CEG – прямые, ∠AGF и ∠CGE равны как вертикальные углы).
  • ABC∼△BEF: по трем равным углам (∠ABC = ∠EBF, ∠ACB =BFE,CAB =BEF).
    Замечательное свойство высот треугольника
    Примечание: доказательство подобия последней пары треугольников достаточно длинное и не является целью данной статьи, поэтому подробно останавливаться на нем будем.

Свойство 3

Точка пересечения высот в остроугольном треугольнике является центром окружности, вписанной в его ортотреугольник.

Замечательное свойство высот треугольника

Ортотреугольник – треугольник, вершинами которого являются основания высот △ABC. В нашем случае – это △DEF.

Свойство 4

Точки, которые симметричны ортоцентру треугольника относительно его сторон, лежат на окружности, описанной вокруг этого треугольника.

Замечательное свойство высот треугольника

Примечание: формулы для нахождения высоты треугольника подробно рассмотрены в нашей публикации – “Как найти высоту в треугольнике abc”.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Свойства высот треугольника

Видео:ВЫСОТА ТРЕУГОЛЬНИКА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ВЫСОТА ТРЕУГОЛЬНИКА 😉 #егэ #математика #профильныйегэ #shorts #огэ

свойства высоты в треугольнике

Свойство 1
Замечательное свойство высот треугольника

Высоты треугольника или их продолжения пересекаются в одной точке — ортоцентре треугольника.

Свойство 2
Замечательное свойство высот треугольника

Если AD, BE, CF — высоты треугольника ABC, O — точка пересечения этих высот или их продолжений, то:

Замечательное свойство высот треугольника

Свойство 3
Замечательное свойство высот треугольника

Высота, опущенная на гипотенузу прямоугольного треугольника, делит его на два треугольника, подобных между собой и подобных исходному треугольнику:

Замечательное свойство высот треугольника

Высота на сторону c вычисляется по формулам:

Видео:Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

Высота треугольника. Задача Фаньяно

Замечательное свойство высот треугольникаВысота треугольника. Свойство высоты прямоугольного треугольника
Замечательное свойство высот треугольникаРасположение высот у треугольников различных типов
Замечательное свойство высот треугольникаОртоцентр треугольника
Замечательное свойство высот треугольникаРасположение ортоцентров у треугольников различных типов
Замечательное свойство высот треугольникаОртоцентрический треугольник
Замечательное свойство высот треугольникаЗадача Фаньяно

Видео:Геометрия 7.Треугольники урок 6. Высота треугольника. Определение, свойства, точки пересечения высотСкачать

Геометрия 7.Треугольники урок 6. Высота треугольника. Определение, свойства, точки пересечения высот

Высота треугольника. Свойство высоты прямоугольного треугольника

Определение 1 . Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника. Основанием высоты называют основание этого перпендикуляра (рис.1).

Замечательное свойство высот треугольника

На рисунке 1 изображена высота BD , проведённая из вершины B треугольника ABC . Точка D – основание высоты.

Для высоты прямоугольного треугольника, проведённой из вершины прямого угла, справедливо следующее утверждение.

Утверждение . Длина высоты прямоугольного треугольника, опущенной на гипотенузу, является средним геометрическим между длинами отрезков, на которые основание высоты делит гипотенузу (рис.2).

Замечательное свойство высот треугольника

Доказательство . Углы треугольников BCD и ACD (рис.2) удовлетворяют соотношениям

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Таким образом, длина отрезка CD является средним геометрическим между длинами отрезков BD и AD , что и требовалось доказать.

Высоты можно провести из каждой вершины треугольника, однако у треугольников различных типов высоты располагаются по-разному, как показано в следующей таблице.

Видео:Свойства высот треугольникаСкачать

Свойства высот треугольника

Расположение высот у треугольников различных типов

ФигураРисунокОписание
Остроугольный треугольникЗамечательное свойство высот треугольникаВсе высоты остроугольного треугольника лежат внутри треугольника.
Замечательное свойство высот треугольника
Замечательное свойство высот треугольника
Прямоугольный треугольникЗамечательное свойство высот треугольникаВысоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Замечательное свойство высот треугольника
Замечательное свойство высот треугольника
Тупоугольный треугольникЗамечательное свойство высот треугольникаВысоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника
Замечательное свойство высот треугольника
Замечательное свойство высот треугольника
Остроугольный треугольник
Замечательное свойство высот треугольникаЗамечательное свойство высот треугольникаЗамечательное свойство высот треугольника
Все высоты остроугольного треугольника лежат внутри треугольника.
Прямоугольный треугольник
Замечательное свойство высот треугольникаЗамечательное свойство высот треугольникаЗамечательное свойство высот треугольника
Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Тупоугольный треугольник
Замечательное свойство высот треугольникаЗамечательное свойство высот треугольникаЗамечательное свойство высот треугольника
Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Все высоты остроугольного треугольника лежат внутри треугольника.

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Видео:Геометрия 8 класс (Урок№31 - Теорема о пересечении высот треугольника.)Скачать

Геометрия 8 класс (Урок№31 - Теорема о пересечении высот треугольника.)

Ортоцентр треугольника

Теорема 1 . Высоты треугольника (или их продолжения) пересекаются в одной точке.

Доказательство . Рассмотрим произвольный треугольник ABC и проведём через каждую из его вершин прямую, параллельную противолежащей стороне (рис.3).

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Обозначим точки пересечения этих прямых символами A1 , B1 и C1 , как показано на рисунке 3.

Следовательно, точка B является серединой стороны C1A1 .

Следовательно, точка A является серединой стороны C1B1 .

Следовательно, точка C является серединой стороны B1A1 .

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

и в силу теоремы о серединных перпендикулярах пересекаются в одной точке.

Теорема 1 доказана.

Определение 2 . Точку пересечения высот треугольника (или их продолжений) называют ортоцентром треугольника.

У треугольников различных типов ортоцентры располагаются по-разному, как показано в следующей таблице.

Видео:Свойства ортоцентра и свойства высот треугольникаСкачать

Свойства ортоцентра и свойства высот треугольника

Расположение ортоцентров у треугольников различных типов

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Замечательное свойство высот треугольника

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Замечательное свойство высот треугольника

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Видео:17. Медианы, биссектрисы и высоты треугольникаСкачать

17. Медианы, биссектрисы и высоты треугольника

Ортоцентрический треугольник

Решим следующую задачу.

Задача . В остроугольном треугольнике ABC проведены высоты AD и BE (рис.5). Доказать, что треугольник DCE подобен треугольнику ABC .

Замечательное свойство высот треугольника

Решение . Рассмотрим треугольники ADC и BEC . Эти треугольники подобны в силу признака подобия прямоугольных треугольников с равными острыми углами (угол C общий). Следовательно, справедливо равенство

Замечательное свойство высот треугольника

Это равенство, а также наличие общего угла C позволяют на основании признака подобия треугольников заключить, что и треугольники DCE и ABC подобны. Решение задачи завершено.

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Определение 3 . Ортоцентрическим треугольником (ортотреугольником) называют треугольник, вершинами которого служат основания высот исходного треугольника (рис 6).

Замечательное свойство высот треугольника

Из определения 3 и следствия 1 вытекает следствие 2.

Следствие 2 . Пусть FDE – ортоцентрический треугольник с вершинами в основаниях высот остроугольного треугольника ABC (рис 7).

Замечательное свойство высот треугольника

Тогда справедливы равенства

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Из следствия 2 вытекает теорема 2.

Теорема 2 . Высоты остроугольного треугольника являются биссектрисами углов его ортоцентрического треугольника (рис.7).

Доказательство . Воспользовавшись следствием 2, получаем:

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

что и требовалось доказать.

Видео:Замечательные точки треуг-ка. 8 класс.Скачать

Замечательные точки треуг-ка. 8 класс.

Задача Фаньяно

Задача Фаньяно . Рассматриваются всевозможные треугольники DEF , вершины D, E и F которых лежат на сторонах BC, AC и AB остроугольного треугольника ABC соответственно. Доказать, что из всех треугольников DEF наименьшим периметром обладает ортоцентрический треугольник треугольника ABC .

Решение . Пусть DEF – один из рассматриваемых треугольников. Обозначим символом D1 точку, симметричную точке D относительно прямой AC , и обозначим символом D2 точку, симметричную точке D относительно прямой AB (рис.8).

Замечательное свойство высот треугольника

Поскольку отрезок прямой – кратчайшее расстояние между двумя точками, то периметр треугольника DEF оказывается не меньшим, чем длина отрезка D1D2 . Отсюда вытекает, что при фиксированной точке D наименьшим периметром обладает такой треугольник DEF , вершины F и E которого являются точками пересечения прямой D1D2 с прямыми AB и AC соответственно. Периметр этого треугольника равен длине отрезка D1D2 (рис.9).

Замечательное свойство высот треугольника

Заметим также, что выполнено равенство

Кроме того, выполнено равенство

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Отсюда вытекает, что длина отрезка D1D2 будет наименьшей тогда, когда длина отрезка AD будет наименьшей, т.е. в том случае, когда отрезок AD является высотой треугольника ABC . Другими словами, наименьшим периметром обладает такой треугольник DEF , у которого вершина D является основанием высоты треугольника ABC , проведённой из вершины A , а вершины E и F построены по описанной выше схеме. Таким образом, среди всевозможных треугольников DEF треугольник с наименьшим периметром является единственным.

Если обозначить длину высоты, проведённой из вершины A , длину стороны AB и радиус описанной около треугольника ABC окружности буквами h, c и R соответственно, то, воспользовавшись теоремой синусов, получим:

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Следовательно, наименьший периметр рассматриваемых треугольников DEF равен

Замечательное свойство высот треугольника

Теперь докажем, что ортоцентрический треугольник и является треугольником с наименьшим периметром. Для этого воспользуемся следующей леммой.

Лемма . Пусть DEF – ортоцентрический треугольник треугольника ABC (рис.10).

Замечательное свойство высот треугольника

В этом случае отрезок D1D2 проходит через точки F и E .

Доказательство . Заметим, что в силу следствия 2 выполняются равенства:

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Кроме того, в силу равенства треугольников DFK и KFD2 , а также в силу равенства треугольников DEL и LED1 выполняются равенства:

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

Замечательное свойство высот треугольника

откуда вытекает, что углы AEF и D1EL , а также AFE и D2FK являются вертикальными углами. Это означает, что точки D1 , F, E , D2 лежат на одной прямой. Лемма доказана.

Доказательство леммы и завершает решение задачи Фаньяно.

📹 Видео

Урок по теме ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА ГЕОМЕТРИЯ 8 КЛАСССкачать

Урок по теме ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА ГЕОМЕТРИЯ 8 КЛАСС

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольник

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

ПЕРЕСЕЧЕНИЕ ВЫСОТ треугольника ТЕОРЕМА 8 класс АтанасянСкачать

ПЕРЕСЕЧЕНИЕ ВЫСОТ треугольника ТЕОРЕМА 8 класс Атанасян

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.

Высоты треугольника.Скачать

Высоты треугольника.

Четыре замечательные точки треугольникаСкачать

Четыре замечательные точки треугольника
Поделиться или сохранить к себе:
ФигураРисунокОписание
Остроугольный треугольникЗамечательное свойство высот треугольника
Прямоугольный треугольникЗамечательное свойство высот треугольника