Видео:№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать
Центральный и вписанный углы
*Если на окружности отметить две точки, они разделят окружность на две дуги.
У каждой дуги есть градусная мера. Сумма градусных мер двух дуг с общими концами равна 360°.
*Угол с вершиной в центре окружности называется центральным углом.
*Градусная мера центрального угла равна градусной мере соответствующей дуги окружности:
*Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом.
*Вписанный угол измеряется половиной дуги, на которую он опирается:
* Если отрезок, соединяющий концы дуги, является диаметром окружности, то дугу называют полуокружностью. Градусная мера полуокружности равна 180°.
*Вписанный угол, опирающийся на полуокружность, равен 90°.
*Если центральный угол и вписанный опираются на одну и туже дугу, они называются соответственными.
*В этом случае градусная мера вписанного угла в 2 раза меньше градусной меры центрального угла.
Видео:Геометрия Найдите градусные меры двух дуг окружности, на которые ее делят две точки, если градусныеСкачать
Окружность и круг (Вольфсон Г. И.)
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На данном уроке дается определение окружности и круга, а также определение дуги, радиуса, хорды и диаметра окружности, рассматривается взаимное расположение точек и окружности, а также двух окружностей, решаются различные задачи по этой теме.
Видео:Как искать точки на тригонометрической окружности.Скачать
§ 2. Центральные и вписанные углы
Градусная мера дуги окружности
Отметим на окружности две точки А и В. Они разделяют окружность на две дуги. Чтобы различать эти дуги, на каждой из них отмечают промежуточную точку, например L и М (рис. 214). Обозначают дуги так: ALB и AMВ. Иногда используется обозначение без промежуточной точки: AB (когда ясно, о какой из двух дуг идёт речь).
Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром окружности. На рисунке 215, а изображены две полуокружности, одна из которых выделена цветом.
Угол с вершиной в центре окружности называется её центральным углом. Пусть стороны центрального угла окружности с центром О пересекают её в точках А к В. Центральному углу АОВ соответствуют две дуги с концами А и В (рис. 215). Если ∠АОВ развёрнутый, то ему соответствуют две полуокружности (рис. 215, а). Если ∠АОВ неразвёрнутый, то говорят, что дуга АВ, расположенная внутри этого угла, меньше полуокружности. На рисунке 215, б эта дуга выделена цветом. Про другую дугу с концами А и В говорят, что она больше полуокружности (дуга ALB на рисунке 215, в).
Дугу окружности можно измерять в градусах. Если дуга А В окружности с центром О меньше полуокружности или является полуокружностью, то её градусная мера считается равной градусной мере центрального угла АОВ (см. рис. 215, а, б). Если же дуга АВ больше полуокружности, то её градусная мера считается равной 360° — ∠АОВ (см. рис. 215, в).
Отсюда следует, что сумма градусных мер двух дуг окружности с общими концами равна 360°.
Градусная мера дуги АВ (дуги ALB), как и сама дуга, обозначается символом АВ (ALB). На рисунке 216 градусная мера дуги САВ равна 145°. Обычно говорят кратко: «Дуга САВ равна 145°» и пишут: CAB =145°. На этом же рисунке ADB = 360° — 115° = 245°, CDB = 360° — 145° = 215°, DВ = 180°.
Теорема о вписанном угле
Угол, вершина которого лежит на окружности, а стороны пересекают, окружность, называется вписанным углом.
На рисунке 217 угол АВС вписанный, дуга АМС расположена внутри этого угла. В таком случае говорят, что вписанный угол АВС опирается на дугу АМС. Докажем теорему о вписанном угле.
Вписанный угол измеряется половиной дуги, на которую он опирается. |
Пусть ∠ABC — вписанный угол окружности с центром О, опирающийся на дугу АС (рис. 218). Докажем, что Рассмотрим три возможных случая расположения луча ВО относительно угла АВС.
1) Луч ВО совпадает с одной из сторон угла АВС, например со стороной ВС (рис. 218, а). В этом случае дуга АС меньше полуокружности, поэтому ∠AOC = AC. Так как угол АОС — внешний угол равнобедренного треугольника АВО, а углы 1 и 2 при основании равнобедренного треугольника равны, то
Отсюда следует, что
2∠1 = AC или
2) Луч ВО делит угол АВС на два угла. В этом случае луч ВО пересекает дугу АС в некоторой точке D (рис. 218, б). Точка D разделяет дугу АС на две дуги: AD и DC. По доказанному в п. 1)
Складывая эти равенства, получаем:
3) Луч ВО не делит угол ABC на два угла и не совпадает со стороной этого угла. Для этого случая, пользуясь рисунком 218, в, проведите доказательство самостоятельно.
Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 219). |
Вписанный угол, опирающийся на полуокруж ность, — прямой (рис. 220). |
Используя следствие 1, докажем теорему о произведении отрезков пересекающихся хорд.
Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды. |
Пусть хорды АВ и CD пересекаются в точке Е (рис. 221). Докажем, что
Рассмотрим треугольники ADE и СВЕ. В этих треугольниках углы 1 и 2 равны, так как они вписанные и опираются на одну и ту же дугу BD, а углы 3 и 4 равны как вертикальные. По первому признаку подобия треугольников ΔADE ∼ ΔCBE. Отсюда следует, что или АЕ • BE = СЕ • DE. Теорема доказана.
Задачи
649. Начертите окружность с центром О и отметьте на ней точку А. Постройте хорду АВ так, чтобы: a) ∠AOB = 60°; б) ∠AOB = 90°; в) ∠AOB = 120°; г) ∠AOB = 180°.
650. Радиус окружности с центром О равен 16. Найдите хорду АВ, если: a) ∠AOB = 60°; б) ∠AOB = 90°; в) ∠AOB =180°.
651. Хорды АВ и CD окружности с центром О равны.
а) Докажите, что две дуги с концами А и В соответственно равны двум дугам с концами С и D.
б) Найдите дуги с концами С и D, если ∠AOB = 112°.
652. На полуокружности АВ взяты точки С и D так, что АС = 37°, BD = 23°. Найдите хорду CD, если радиус окружности равен 15см.
653. Найдите вписанный угол АВС, если дуга АС, на которую он опирается, равна: а) 48°; б) 57°; в) 90°; г) 124°; д) 180°.
654. По данным рисунка 222 найдите х.
655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. Найдите каждый из этих углов.
656. Хорда АВ стягивает дугу, равную 115°, а хорда АС — дугу в 43°. Найдите угол ВАС.
657. Точки А и В разделяют окружность на две дуги, меньшая из которых равна 140°, а большая точкой М делится в отношении 6 : 5, считая от точки А. Найдите угол ВАМ.
658. Через точку А к данной окружности проведены касательная АВ (В — точка касания) и секущая AD, проходящая через центр О (D — точка на окружности, О лежит между А и D). Найдите ∠BAD и ∠ADB, если BD = 110°20′.
659. Докажите, что градусные меры дуг окружности, заключённых между параллельными хордами, равны.
660. Через точку, лежащую вне окружности, проведены две секущие, образующие угол в 32°. Большая дуга окружности, заключённая между сторонами этого угла, равна 100°. Найдите меньшую дугу.
661. Найдите острый угол, образованный двумя секущими, проведёнными из точки, лежащей вне окружности, если дуги, заключённые между секущими, равны 140° и 52°.
662. Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если AD = 54°, BC = 70°.
663. Отрезок АС — диаметр окружности, АВ — хорда, МА — касательная, угол МАВ острый. Докажите, что ∠MAB = ∠ACB.
664. Прямая AM — касательная к окружности, АВ — хорда этой окружности. Докажите, что угол МАВ измеряется половиной дуги АВ, расположенной внутри угла МАВ.
665. Вершины треугольника АВС лежат на окружности. Докажите, что если АВ — диаметр окружности, то ∠C > ∠A и ∠C > ∠B.
666. Хорды АВ и CD пересекаются в точке Е. Найдите ED, если:
а) АЕ = 5, ВЕ = 2, СЕ = 2,5; б) АЕ = 16, ВЕ = 9, CE = ED;
в) АЕ = 0,2, BE = 0,5, СЕ = 0,4.
667. Диаметр АА1 окружности перпендикулярен к хорде ВВ1 и пересекает её в точке С. Найдите ВВ1 если АС = 4 см, СА1 = 8 см.
668. Докажите, что перпендикуляр, проведённый из какой-нибудь точки окружности к диаметру, есть среднее пропорциональное для отрезков, на которые основание перпендикуляра делит диаметр.
669. Пользуясь утверждением, сформулированным в задаче 668, постройте отрезок, равный среднему пропорциональному для двух данных отрезков.
670. Через точку А проведены касательная АВ (В — точка касания) и секущая, которая пересекает окружность в точках Р и Q. Докажите, что АВ 2 = АР • AQ.
671. Через точку А проведены касательная АВ (В — точка касания) и секущая, которая пересекает окружность в точках С и D. Найдите CD, если: а) АВ = 4 см, АС = 2 см; б) АВ = 5 см, AD = 10 см.
672. Через точку А, лежащую вне окружности, проведены две секущие, одна из которых пересекает окружность в точках В1 и С1, а другая — в точках В2 и С2. Докажите, что АВ1 • АС1 = АВ2 • АС2.
673. К данной окружности постройте касательную, проходящую через данную точку вне окружности.
Пусть даны окружность с центром О и точка А вне этой окружности. Допустим, что задача решена и АВ — искомая касательная (рис. 223). Так как прямая АВ перпендикулярна к радиусу ОВ, то решение задачи сводится к построению точки В окружности, для которой ∠ABO прямой. Эту точку можно построить следующим образом: проводим отрезок ОА и строим его середину О1. Затем проводим окружность с центром в точке Ох радиуса О1А. Эта окружность пересекает данную окружность в двух точках: В1В1. Прямые АВ и АВ1 — искомые касательные, так как АВ ⊥ ОВ и АВ1 ⊥ ОВ1. Действительно, углы АВО и АВ1O, вписанные в окружность с центром О1, опираются на полуокружности, поэтому они прямые. Очевидно, задача имеет два решения.
💥 Видео
10 класс, 11 урок, Числовая окружностьСкачать
Геометрия Найдите градусные меры двух дуг окружности, на которые ее делят две точки, если градуснаяСкачать
Радиус и диаметрСкачать
Окружность, диаметр, хорда геометрия 7 классСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Окружность. 7 класс.Скачать
Деление окружности на 3; 6; 12 равных частейСкачать
Точки на числовой окружностиСкачать
Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
5 класс, 22 урок, Окружность и кругСкачать
Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать
8 класс, 33 урок, Градусная мера дуги окружностиСкачать
Изобразить на единичной окружности точку.Скачать
Построение окружности по трём точкам.Скачать
Уравнение окружности (1)Скачать
Тригонометрическая окружность. Как выучить?Скачать
Задание 16 из ОГЭ. Найдите длину большей дуги.Скачать