- Окружность
- Построения циркулем и линейкой
- Примеры задач на построение
- Построение угла, равного данному
- Построение биссектрисы угла
- Построение перпендикулярных прямых
- Построение середины отрезка
- Задачи
- Ответы к задачам
- Задачи на построение циркулем и линейкой с примерами решения
- Задача 1 (построение угла, равного данному)
- Задача 2 (построение серединного перпендикуляра к отрезку)
- Задача 3 (построение биссектрисы угла)
- Построение треугольника по трем элементам
- Задача 4 (построение треугольника по двум сторонам и углу между ними)
- Задача 5 (построение треугольника по стороне и двум прилежащим к ней углам)
- Задача 6 (построение треугольника по трем сторонам)
- Как построить биссектрису данного угла? Задачи на построение
- Как построить биссектрису данного угла?
- Алгоритм построения
- Доказательство
- 🌟 Видео
Окружность
Предложение, в котором разъясняется смысл того или иного выражения или названия, называется определением. Мы уже встречались с определениями, например с определением угла, смежных углов, равнобедренного треугольника и т. д. Дадим определение ещё одной геометрической фигуры — окружности.
Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки. |
Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, — радиусом окружности (рис. 77). Из определения окружности следует, что все радиусы имеют одну и ту же длину.
Отрезок, соединяющий две точки окружности, называется её хордой. Хорда, проходящая через центр окружности, называется её диаметром.
На рисунке 78 отрезки АВ и EF — хорды окружности, отрезок CD — диаметр окружности. Очевидно, диаметр окружности в два раза больше её радиуса. Центр окружности является серединой любого диаметра.
Любые две точки окружности делят её на две части. Каждая из этих частей называется дугой окружности. На рисунке 79 ALB и АМВ — дуги, ограниченные точками А и В.
Для изображения окружности на чертеже пользуются циркулем (рис. 80).
Чтобы провести окружность на местности, можно воспользоваться верёвкой (рис. 81).
Часть плоскости, ограниченная окружностью, называется кругом (рис. 82).
Построения циркулем и линейкой
Мы уже имели дело с геометрическими построениями: проводили прямые, откладывали отрезки, равные данным, чертили углы, треугольники и другие фигуры. При этом мы пользовались масштабной линейкой, циркулем, транспортиром, чертёжным угольником.
Оказывается, что многие построения можно выполнить с помощью только циркуля и линейки без масштабных делений. Поэтому в геометрии специально выделяют те задачи на построение, которые решаются с помощью только этих двух инструментов.
Что можно делать с их помощью? Ясно, что линейка позволяет провести произвольную прямую, а также построить прямую, проходящую через две данные точки. С помощью циркуля можно провести окружность произвольного радиуса, а также окружность с центром в данной точке и радиусом, равным данному отрезку. Выполняя эти несложные операции, мы сможем решить много интересных задач на построение:
построить угол, равный данному;
через данную точку провести прямую, перпендикулярную к данной прямой;
разделить данный отрезок пополам и другие задачи.
Начнём с простой задачи.
На данном луче от его начала отложить отрезок, равный данному.
Изобразим фигуры, данные в условии задачи: луч ОС и отрезок АВ (рис. 83, а). Затем циркулем построим окружность радиуса АВ с центром О (рис. 83, б). Эта окружность пересечёт луч ОС в некоторой точке D. Отрезок OD — искомый.
Примеры задач на построение
Видео:Построение биссектрисы углаСкачать
Построение угла, равного данному
Отложить от данного луча угол, равный данному.
Данный угол с вершиной А и луч ОМ изображены на рисунке 84. Требуется построить угол, равный углу А, так, чтобы одна из его сторон совпала с лучом ОМ.
Проведём окружность произвольного радиуса с центром в вершине А данного угла. Эта окружность пересекает стороны угла в точках В и С (рис. 85, а). Затем проведём окружность того же радиуса с центром в начете данного луча ОМ. Она пересекает луч в точке D (рис. 85, б). После этого построим окружность с центром D, радиус которой равен ВС. Окружности с центрами О и D пересекаются в двух точках. Одну из этих точек обозначим буквой Е. Докажем, что угол МОЕ — искомый.
Рассмотрим треугольники АВС и ODE. Отрезки АВ и АС являются радиусами окружности с центром А, а отрезки OD и ОЕ — радиусами окружности с центром О (см. рис. 85, б). Так как по построению эти окружности имеют равные радиусы, то AB = OD, АС = ОЕ. Также по построению ВС = DE.
Следовательно, ΔАВС = ΔODE по трём сторонам. Поэтому ∠DOE = ∠BAC, т. е. построенный угол МОЕ равен данному углу А.
То же построение можно выполнить и на местности, если вместо циркуля воспользоваться верёвкой.
Видео:Построение биссектрисы угла. 7 класс.Скачать
Построение биссектрисы угла
Построить биссектрису данного угла.
Данный угол ВАС изображён на рисунке 86. Проведём окружность произвольного радиуса с центром в вершине А. Она пересечёт стороны угла в точках В и С.
Затем проведём две окружности одинакового радиуса ВС с центрами в точках В и С (на рисунке изображены лишь части этих окружностей). Они пересекутся в двух точках, из которых хотя бы одна лежит внутри угла. Обозначим её буквой Е. Докажем, что луч АЕ является биссектрисой данного угла ВАС.
Рассмотрим треугольники АСЕ и АВЕ. Они равны по трём сторонам. В самом деле, АЕ — общая сторона; АС и АВ равны как радиусы одной и той же окружности; СЕ = BE по построению.
Из равенства треугольников АСЕ и АВЕ следует, что ∠CAE = ∠BAE, т. е. луч АЕ — биссектриса данного угла ВАС.
Можно ли с помощью циркуля и линейки разделить данный угол на два равных угла? Ясно, что можно, — для этого нужно провести биссектрису этого угла.
Данный угол можно разделить также на четыре равных угла. Для этого нужно разделить его пополам, а затем каждую половину разделить ещё раз пополам.
А можно ли с помощью циркуля и линейки разделить данный угол на три равных угла? Эта задача, получившая название задачи о трисекции угла, в течение многих веков привлекала внимание математиков. Лишь в XIX веке было доказано, что для произвольного угла такое построение невозможно.
Построение перпендикулярных прямых
Даны прямая и точка на ней. Построить прямую, проходящую через данную точку и перпендикулярную к данной прямой.
Данная прямая а и данная точка М, принадлежащая этой прямой, изображены на рисунке 87.
На лучах прямой а, исходящих из точки М, отложим равные отрезки МА и МВ. Затем построим две окружности с центрами А и В радиуса АВ. Они пересекаются в двух точках: Р и Q.
Проведём прямую через точку М и одну из этих точек, например прямую МР (см. рис. 87), и докажем, что эта прямая — искомая, т. е. что она перпендикулярна к данной прямой а.
В самом деле, так как медиана РМ равнобедренного треугольника РАВ является также высотой, то PM ⊥ а.
Построение середины отрезка
Построить середину данного отрезка.
Пусть АВ — данный отрезок. Построим две окружности с центрами А и В радиуса АВ. Они пересекаются в точках Р и Q. Проведём прямую PQ. Точка О пересечения этой прямой с отрезком АВ и есть искомая середина отрезка АВ.
В самом деле, треугольники APQ и BPQ равны по трём сторонам, поэтому ∠1 =∠2 (рис. 89).
Следовательно, отрезок РО — биссектриса равнобедренного треугольника АРВ, а значит, и медиана, т. е. точка О — середина отрезка АВ.
Задачи
143. Какие из отрезков, изображённых на рисунке 90, являются: а) хордами окружности; б) диаметрами окружности; в) радиусами окружности?
144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВС равны; в) ∠BAD = ∠BCD.
145. Отрезок МК — диаметр окружности с центром О, а МР и РК — равные хорды этой окружности. Найдите ∠POM.
146. Отрезки АВ и CD — диаметры окружности с центром О. Найдите периметр треугольника AOD, если известно, что СВ = 13 см, АВ = 16 см.
147. На окружности с центром О отмечены точки А и В так, что угол АОВ — прямой. Отрезок ВС — диаметр окружности. Докажите, что хорды АВ и АС равны.
148. На прямой даны две точки А и В. На продолжении луча В А отложите отрезок ВС так, чтобы ВС = 2АВ.
149. Даны прямая а, точка В, не лежащая на ней, и отрезок PQ. Постройте точку М на прямой а так, чтобы BM = PQ. Всегда ли задача имеет решение?
150. Даны окружность, точка А, не лежащая на ней, и отрезок PQ. Постройте точку М на окружности так, чтобы AM = PQ. Всегда ли задача имеет решение?
151. Даны острый угол ВАС и луч XY. Постройте угол YXZ так, чтобы ∠YXZ = 2∠BAC.
152. Дан тупой угол АОВ. Постройте луч ОХ так, чтобы углы ХОА и ХОВ были равными тупыми углами.
153. Даны прямая а и точка М, не лежащая на ней. Постройте прямую, проходящую через точку М и перпендикулярную к прямой а.
Построим окружность с центром в данной точке М, пересекающую данную прямую а в двух точках, которые обозначим буквами А и В (рис. 91). Затем построим две окружности с центрами А и В, проходящие через точку М. Эти окружности пересекаются в точке М и ещё в одной точке, которую обозначим буквой N. Проведём прямую MN и докажем, что эта прямая — искомая, т. е. она перпендикулярна к прямой а.
В самом деле, треугольники AMN и BMN равны по трём сторонам, поэтому ∠1 = ∠2. Отсюда следует, что отрезок МС (С — точка пересечения прямых а и MN) является биссектрисой равнобедренного треугольника АМВ, а значит, и высотой. Таким образом, MN ⊥ АВ, т. е. MN ⊥ а.
154. Дан треугольник АВС. Постройте: а) биссектрису АК; б) медиану ВМ; в) высоту СН треугольника. 155. С помощью циркуля и линейки постройте угол, равный: а) 45°; б) 22°30′.
Ответы к задачам
152. Указание. Сначала построить биссектрису угла АОВ.
Видео:Построение биссектрисы углаСкачать
Задачи на построение циркулем и линейкой с примерами решения
Содержание:
Основные задачи на построение циркулем и линейкой:
В данном параграфе рассмотрим вопрос о построении геометрических фигур. Вы уже знаете, что геометрические построения можно осуществлять с помощью масштабной линейки, циркуля, транспортира и чертежного угольника. В то же время оказывается, что многие геометрические фигуры можно построить, пользуясь только циркулем и линейкой без масштабных делений.
При построении геометрических фигур с помощью циркуля и линейки без масштабных делений учитывается, что:
- с помощью линейки можно провести произвольную прямую, а также построить прямую, проходящую через две точки;
- с помощью циркуля можно провести окружность произвольного радиуса, а также построить окружность с центром в данной точке и радиусом, равным данному отрезку.
Теперь рассмотрим основные задачи на построение циркулем и линейкой: построение угла, равного данному, построение серединного перпендикуляра к отрезку, построение биссектрисы угла.
Видео:Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать
Задача 1 (построение угла, равного данному)
От данного луча OF отложите угол, равный данному углу ABC.
Предположим, что угол DOF, удовлетворяющий условию задачи, построен (рис. 130, а).
Пусть
1) Строим окружность (В, R) , где R — произвольный радиус, и отмечаем точки А1 и С1 пересечения ее со сторонами угла ABC.
2) Строим окружность (0, R) с центром в точке О того же радиуса R и отмечаем ее точку пересечения F1 с лучом OF.
3) Строим окружность (F1, A1C1).
4) Пусть D1 — одна из точек пересечения окружностей (0, R) и (F1, A1C1) (рис. 130, б). Тогда угол D1OF — искомый. Докажем, что D1OF =ABC.
Равенство D1OF =ABC следует из равенства треугольников А1ВС1 и D1OF1. Действительно, по построению А1В = D1O = С1В = F1O. Кроме того, по построению F1D1 = А1С1, следовательно, треугольники А1ВС1 и D1OF1 равны по трем сторонам. Отсюда следует, что D1OF =А1ВС1, т. е. построенный угол D1OF равен данному углу ABC.
Видео:Биссектриса угла. 2 задачиСкачать
Задача 2 (построение серединного перпендикуляра к отрезку)
Постройте серединный перпендикуляр к данному отрезку АВ.
Проведем рассуждения, которые помогут осуществить необходимое построение. Предположим, что серединный перпендикуляр а к отрезку АВ построен (рис. 131, а). Пусть точки F и D лежат на серединном перпендикуляре так, что OF = OD. Прямоугольные треугольники FOB и DOB равны по двум катетам, следовательно, BF = BD. Иначе говоря, точки F и D лежат на окружности (B, BF) и BF > ОВ. Аналогично AF =AD, так как треугольник FOA равен треугольнику DOA. Кроме того, легко увидеть, что AF = BF. Таким образом, точки F и D лежат также и на окружности (A, BF).
1) Строим окружности (A, R) и (B, R) , где R AВ. Пусть, например, R = AB: (A, AB) и (B, AB) (рис. 131, б).
2) Отмечаем точки F и D пересечения окружностей (A, AB) и (B, AB).
3) Тогда прямая FD — серединный перпендикуляр к отрезку АВ. Докажем это.
Рассмотрим треугольники FAD и FBD (рис. 131, в). Указанные треугольники равны по трем сторонам. Следовательно, AFD = BFD. Отсюда следует, что в равнобедренном треугольнике AFD отрезок FO является биссектрисой, а значит, и высотой и медианой, т. е. прямая FO — серединный перпендикуляр к отрезку АВ.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Задача 3 (построение биссектрисы угла)
Постройте биссектрису данного угла ABC.
Допустим, что биссектриса BE данного угла ABC построена (рис. 132, а). Пусть точки F и D лежат на сторонах угла так, что BF = BD, О = FD BE, а точка Т лежит на луче, противоположном лучу ОВ. Из равенства прямоугольных треугольников FOT и DOT (FO = OD, катет ОТ — общий) следует, что FT = DT, т. е. точка Т принадлежит окружностям равных радиусов с центрами в точках F и D. Построив точку Т, мы построим биссектрису ВТ данного угла.
1) Строим окружность (B, R1) произвольного радиуса R1 с центром в вершине В данного угла (рис. 132, б).
2) Отмечаем точки F и D, в которых окружность (B, R) пересекает соответственно стороны ВА и ВС данного угла.
3) Строим окружности (F, R2) и (D, R2), где R2 > FD. Отмечаем точку Т их пересечения, которая лежит внутри данного угла.
4) Проводим луч ВТ. Луч ВТ — искомый. Докажем это.
Рассмотрим треугольники BFT и BDT (рис. 132, в). Эти треугольники равны по трем сторонам (BF = BD и FT = DT — по построению, ВТ — общая сторона). Из равенства этих треугольников следует, что FBT = DBT, т. е. луч ВТ — биссектриса угла ABC.
Видео:Первая задача про биссектрису угла. Геометрия 7 класс.Скачать
Построение треугольника по трем элементам
В данном пункте рассмотрим задачи на построение треугольника по: а) двум сторонам, и углу между ними; б) стороне и двум прилежащим к ней углам; в) трем сторонам.
Видео:8 класс, 35 урок, Свойства биссектрисы углаСкачать
Задача 4 (построение треугольника по двум сторонам и углу между ними)
Постройте треугольник, две стороны которого равны двум данным отрезкам а и b, а угол между этими сторонами равен данному углу hk.
Даны два отрезка а, b и угол hk (рис. 133, а). Требуется с помощью циркуля и линейки построить треугольник ABC, две стороны которого, например, АВ и АС, равны соответственно отрезкам а и b, а угол ВАС равен углу hk.
1) Проведем прямую, на ней отложим отрезок АС, равный отрезку b (рис. 133, б).
2) Строим угол CAF, равный углу hk.
3) На луче AF отложим отрезок АВ, равный отрезку а, и проведем отрезок ВС. Треугольник ABC — искомый (рис. 133, в).
По построению имеем, что АС = b, АВ = а и BAC = hk.
При любых данных отрезках а и b и неразвернутом угле hk каждое из построений 1) — 3) выполнимо, т. е. искомый треугольник можно построить. Треугольники, которые удовлетворяют условию задачи и строятся при различном выборе прямой и отрезка АС, равны между собой по двум сторонам и углу между ними, поэтому говорят, что данная за дача имеет единственное решение.
Видео:Геометрия. 7 класс. Задачи на построение. ЗП2. Построение биссектрисы угла.Скачать
Задача 5 (построение треугольника по стороне и двум прилежащим к ней углам)
Постройте треугольник, сторона которого равна данному отрезку а, а углы, прилежащие к этой стороне, равны данным углам hk и mq.
Дан отрезок а и два угла hk и mq (рис. 134, а). Требуется с помощью циркуля и линейки построить треугольник ABC, сторона которого, например АС, равна отрезку а, а углы ВАС и ВСА равны соответственно углам hk и mq.
1) Проведем прямую и на ней отложим с помощью циркуля отрезок АС, равный отрезку а (рис. 134, б).
2) Строим угол CAF, равный углу hk.
3) Строим угол ACT, равный углу mq.
4) Отмечаем точку В пересечения лучей AF и СТ. Треугольник ABC — искомый (рис. 134, в).
По построению имеем, что АС = a, BAC = hk и ACB = mq.
Для любого данного отрезка а и неразвернутых углов hk и mq каждое из построений 1) — 4) выполнимо, т. е. искомый треугольник можно построить. Треугольники, которые удовлетворяют условию задачи и строятся при различном выборе прямой и отрезка АС, равны между собой по стороне и двум прилежащим к ней углам, поэтому говорят, что данная задача имеет единственное решение.
Видео:Построение биссектрисы в треугольникеСкачать
Задача 6 (построение треугольника по трем сторонам)
Постройте треугольник, стороны которого равны данным отрезкам а, b, с.
Даны отрезки а, b, с (рис. 135, а). Требуется с помощью циркуля и линейки построить треугольник ABC, стороны которого АВ, ВС и АС равны соответственно отрезкам a, b и с.
1) Проведем прямую и на ней с помощью циркуля отложим отрезок АС, равный отрезку с (рис. 135, б).
2) Строим окружность (A, a).
3) Строим окружность (C, b).
4) Пусть В — одна из точек пересечения окружностей (A, a) и (C, b). Тогда треугольник ABC — искомый.
По построению АС = с, АВ = а, ВС = b.
Данная задача не всегда имеет решение. Известно, что в любом треугольнике длина каждой стороны меньше суммы длин двух других его сторон. Таким образом, если длина какого-либо из данных отрезков больше суммы длин двух других, то нельзя построить треугольник, стороны которого равны данным отрезкам.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Задачи на построение по геометрии
- Угол — определение, виды, как обозначают с примерами
- Перпендикулярные прямые в геометрии
- Признаки равенства треугольников
- Соотношения между сторонами и углами треугольника
- Неравенство треугольника — определение и вычисление
- Свойства прямоугольного треугольника
- Расстояние между параллельными прямыми
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Биссектриса углаСкачать
Как построить биссектрису данного угла? Задачи на построение
Существует такой забавный детский стишок, с помощью которого легко запомнить, что такое биссектриса: «Биссектриса — это такая крыса, что бегает по углам и делит угол пополам». Однако нельзя забывать, что, несмотря на простоту запоминания этого шуточного определения, учитель справедливо потребует другое, взятое из учебника.
В дальнейшем изучении школьной программы дети сталкиваются со сложной с первого взгляда задачей — как построить биссектрису данного угла с помощью циркуля. Однако уже более продвинутый школьник без труда справится с этим заданием, которое является основой выполнения цикла задач на построение в геометрии. Давайте же разберемся с этим вопросом раз и навсегда.
Видео:Геометрия 8 класс (Урок№29 - Свойство биссектрисы угла.)Скачать
Как построить биссектрису данного угла?
Вам будет интересно: Французский язык: спряжение vivre
Самым очевидным и наиболее простым способом является использование транспортира, но если данного вспомогательного инструмента не оказалось под рукой, надо уметь строить биссектрису без него.
Для выполнения данной задачи, как уже понял читатель, нам потребуется циркуль, а помимо него — линейка (важно понимать, что делениями на ней пользоваться нельзя) и простой карандаш с ластиком.
Видео:Геометрия № 83 №211 Задача найти угол между биссектрисами смежных и односторонних угловСкачать
Алгоритм построения
Необходимо совершить такие действия:
Мы дали ответ на поставленный вопрос — как построить биссектрису данного угла.
Видео:Биссектриса угла. Геометрия 7 класс.Скачать
Доказательство
Теперь, разобравшись, как построить биссектрису данного угла, стоит вспомнить еще одно определение биссектрисы, используя термин «геометрическое место точек». Биссектрисой называется геометрическое место точек, которые равноудалены от лучей, образующих угол.
Согласно выполненному построению в пунктах 4-6, точка, принадлежащая построенной биссектрисе, также принадлежит двум окружностям, равным по радиусу, центр которых располагается на лучах, образующих угол на одинаковом расстоянии от вершины угла (согласно пунктам 1-3 построения). Опустим перпендикуляр из отмеченной в пункте 6 точки на лучи, образующие угол. Докажем, что получившиеся прямоугольные треугольники равны, и выясним, что опущенные перпендикуляры также равны, как соответствующие элементы треугольников. Таким образом, их общая гипотенуза является биссектрисой угла по определению. Что и требовалось доказать.
🌟 Видео
Построение угла, равного данному. 7 класс.Скачать
Задачи на построение с помощью циркуля и линейки - 7 класс геометрияСкачать
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
№374. Биссектриса угла А параллелограмма ABCD пересекает сторону ВС в точке КСкачать
Высота, биссектриса, медиана. 7 класс.Скачать
Построить биссектрису угла. Построение с помощью циркуля и линейки.Скачать