Задачи на отношение треугольника

Подобные треугольники

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Определение

Задачи на отношение треугольника

Как правило, два треугольника считаются подобными если они имеют одинаковую форму, даже если они различаются размерами, повернуты или даже перевернуты.

Математическое представление двух подобных треугольников A1B1C1 и A2B2C2 , показанных на рисунке, записывается следующим образом:

Два треугольника являются подобными если:

1. Каждый угол одного треугольника равен соответствующему углу другого треугольника:
∠A1 = ∠A2, ∠B1 = ∠B2 и∠C1 = ∠C2

2. Отношения сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой:
$frac=frac=frac$

3. Отношения двух сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой и при этом
углы между этими сторонами равны:
$frac=frac
$ и $angle A_1 = angle A_2$
или
$frac
=frac$ и $angle B_1 = angle B_2$
или
$frac=frac$ и $angle C_1 = angle C_2$

Не нужно путать подобные треугольники с равными треугольниками. У равных треугольников равны соответствующие длины сторон. Поэтому для равных треугольников:

Из этого следует что все равные треугольники являются подобными. Однако не все подобные треугольники являются равными.

Несмотря на то, что вышеприведенная запись показывает, что для выяснения, являются ли два треугольника подобными или нет, нам должны быть известны величины трех углов или длины трех сторон каждого треугольника, для решения задач с подобными треугольниками достаточно знать любые три величины из указанных выше для каждого треугольника. Эти величины могут составлять различные комбинации:

1) три угла каждого треугольника (длины сторон треугольников знать не нужно).

Или хотя бы 2 угла одного треугольника должны быть равны 2-м углам другого треугольника.
Так как если 2 угла равны, то третий угол также будет равным.(Величина третьего угла составляет 180 — угол1 — угол2)

2) длины сторон каждого треугольника (углы знать не нужно);

3) длины двух сторон и угол между ними.

Далее мы рассмотрим решение некоторых задач с подобными треугольниками. Сначала мы рассмотрим задачи, которые можно решить непосредственным использованием вышеуказанных правил, а затем обсудим некоторые практические задачи, которые решаются по методу подобных треугольников.

Практические задачи с подобными треугольниками

Пример №1: Покажите, что два треугольника на рисунке внизу являются подобными.
Задачи на отношение треугольника

Решение:
Так как длины сторон обоих треугольников известны, то здесь можно применить второе правило:

Пример №2: Покажите, что два данных треугольника являются подобными и определите длины сторон PQ и PR. Задачи на отношение треугольника

Решение:
∠A = ∠P и ∠B = ∠Q, ∠C = ∠R(так как ∠C = 180 — ∠A — ∠B и ∠R = 180 — ∠P — ∠Q)

Из этого следует, что треугольники ΔABC и ΔPQR подобны. Следовательно:
$frac=frac=frac$

Пример №3: Определите длину AB в данном треугольнике.
Задачи на отношение треугольника

Решение:

∠ABC = ∠ADE, ∠ACB = ∠AED и ∠A общий => треугольники ΔABC и ΔADE являются подобными.

$frac = frac = frac = frac = frac = frac Rightarrow 2times AB = AB + 4 Rightarrow AB = 4$

Пример №4:Определить длину AD (x) геометрической фигуры на рисунке.
Задачи на отношение треугольника

Треугольники ΔABC и ΔCDE являются подобными так как AB || DE и у них общий верхний угол C.
Мы видим, что один треугольник является масштабированной версией другого. Однако нам нужно это доказать математически.

AB || DE, CD || AC и BC || EC
∠BAC = ∠EDC и ∠ABC = ∠DEC

Исходя из вышеизложенного и учитывая наличие общего угла C, мы можем утверждать, что треугольники ΔABC и ΔCDE подобны.

Следовательно:
$frac = frac = frac = frac Rightarrow CA = frac = 23.57$
x = AC — DC = 23.57 — 15 = 8.57

Практические примеры

Пример №5: На фабрике используется наклонная конвеерная лента для транспортировки продукции с уровня 1 на уровень 2, который выше уровня 1 на 3 метра, как показано на рисунке. Наклонный конвеер обслуживается с одного конца до уровня 1 и с другого конца до рабочего места, расположенного на расстоянии 8 метров от рабочей точки уровня 1.
Задачи на отношение треугольника

Фабрика хочет модернизировать конвеер для доступа к новому уровню, который находится на расстоянии 9 метров над уровнем 1, и при этом сохранить угол наклона конвеера.

Определите расстояние, на котором нужно установить новый рабочий пункт для обеспечения работы конвеера на его новом конце на уровне 2. Также вычислите дополнительное расстояние, которое пройдет продукция при перемещении на новый уровень.

Решение:

Для начала давайте обозначим каждую точку пересечения определенной буквой, как показано на рисунке.

Исходя из рассуждений, приведенных выше в предыдущих примерах, мы можем сделать вывод о том, что треугольники ΔABC и ΔADE являются подобными. Следовательно,

$frac = frac = frac = frac Rightarrow AB = frac = 24 м$
x = AB — 8 = 24 — 8 = 16 м

Таким образом, новый пункт должен быть установлен на расстоянии 16 метров от уже существующего пункта.

А так как конструкция состоит из прямоугольных треугольников, мы можем вычислить расстояние перемещения продукции следующим образом:

Аналогично, $AC = sqrt = sqrt = 25.63 м$
что является расстоянием, которое проходит продукция в данный момент при попадании на существующий уровень.

y = AC — AE = 25.63 — 8.54 = 17.09 м
это дополнительное расстояние, которое должна пройти продукция для достижения нового уровня.

Пример №6: Стив хочет навестить своего приятеля, который недавно переехал в новый дом. Дорожная карта проезда к дому Стива и его приятеля вместе с известными Стиву расстояниями показана на рисунке. Помогите Стиву добраться к дому его приятеля наиболее коротким путем.
Задачи на отношение треугольника

Решение:

Дорожную карту можно геометрически представить в следующем виде, как показано на рисунке.
Задачи на отношение треугольника

Мы видим, что треугольники ΔABC и ΔCDE подобны, следовательно:
$frac = frac = frac$

В условии задачи сказано, что:

AB = 15 км, AC = 13.13 км, CD = 4.41 км и DE = 5 км

Используя эту информацию, мы можем вычислить следующие расстояния:

Стив может добраться к дому своего друга по следующим маршрутам:

A -> B -> C -> E -> G, суммарное расстояние равно 7.5+13.23+4.38+2.5=27.61 км

F -> B -> C -> D -> G, суммарное расстояние равно 7.5+13.23+4.41+2.5=27.64 км

F -> A -> C -> E -> G, суммарное расстояние равно 7.5+13.13+4.38+2.5=27.51 км

F -> A -> C -> D -> G, суммарное расстояние равно 7.5+13.13+4.41+2.5=27.54 км

Следовательно, маршрут №3 является наиболее коротким и может быть предложен Стиву.

Пример 7:
Триша хочет измерить высоту дома, но у нее нет нужных инструментов. Она заметила, что перед домом растет дерево и решила применить свою находчивость и знания геометрии, полученные в школе, для определения высоты здания. Она измерила расстояние от дерева до дома, результат составил 30 м. Затем она встала перед деревом и начала отходить назад, пока верхний край здания стал виден над верхушкой дерева. Триша отметила это место и измерила расстояние от него до дерева. Это расстояние составило 5 м.

Высота дерева равна 2.8 м, а высота уровня глаз Триши равна 1.6 м. Помогите Трише определить высоту здания.
Задачи на отношение треугольника

Решение:

Геометрическое представление задачи показано на рисунке.
Задачи на отношение треугольника

Сначала мы используем подобность треугольников ΔABC и ΔADE.

$frac = frac = frac = frac Rightarrow 2.8 times AC = 1.6 times (5 + AC) = 8 + 1.6 times AC$

$(2.8 — 1.6) times AC = 8 Rightarrow AC = frac = 6.67$

Затем мы можем использовать подобность треугольников ΔACB и ΔAFG или ΔADE и ΔAFG. Давайте выберем первый вариант.

Видео:Задача по геометрии № 25 ОГЭ на отношение площадейСкачать

Задача по геометрии № 25 ОГЭ на отношение площадей

Решение задач по теме «Отношение площадей подобных треугольников»

Задачи на отношение треугольника

Применение подобия для решения задач. Задачи для подготовки к ОГЭ в 9 классе

Просмотр содержимого документа
«Решение задач по теме «Отношение площадей подобных треугольников»»

Задачи на отношение треугольника

ОТНОШЕНИЕ ПЛОЩАДЕЙ ПОДОБНЫХ ТРЕУГОЛЬНИКОВ

Задачи на отношение треугольника

Если высоты треугольников равны, то площади относятся как основания .

Задачи на отношение треугольника

Медиана делит треугольник на два равновеликих треугольника.

Три медианы делят треугольник на 6 равновеликих треугольников.

Задачи на отношение треугольника

Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведение сторон, заключающих равные углы

Задачи на отношение треугольника

Задачи на отношение треугольника

Дайте ответы на вопросы:

1. Что называют отношением отрезков AB и CD?

2. При каком условии отрезки AB, CD и A 1 B 1 , C 1 D 1 называют пропорциональными?

3. Назовите сходственные стороны треугольников ∆MKL и ∆PZD, если

4. Используя свойство биссектрисы треугольника, найдите KN, если OC=4см, CN=3см, OK=2см.

Задачи на отношение треугольника

Теорема: «Об отношении площадей подобных треугольников» Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Дано: ∆ABC ∾ ∆A 1 B 1 C 1

1. Так как по условию ∆ABC ∾ ∆A 1 B 1 C 1 , то

∠ A=∠A 1 , по теореме об отношении площадей треугольников (п.53), значит

Задачи на отношение треугольника

  • Две сходственные стороны подобных треугольников равны

8 см и 4 см. Периметр второго треугольника равен 12 см.

Чему равен периметр первого треугольника ?

2. Две сходственные стороны подобных треугольников равны

9 см и 3 см. Площадь второго треугольника равна 9 см 2 .

Чему равна площадь первого треугольника ?

3. Две сходственные стороны подобных треугольников равны

5 см и 10 см. Площадь второго треугольника равна 32 см 2 .

Чему равна площадь первого треугольника ?

4. Площади двух подобных треугольников равны 12 см 2 и 48 см 2 .

Одна из сторон первого треугольника равна 4 см. Чему равна

сходственная сторона второго треугольника ?

Задачи на отношение треугольника

Дано : ∆ABC ∾ ∆A 1 B 1 C 1 ,

1.Так как по условию

то по т . «Об отношении площадей подобных треугольников»:

2.Так как : ∆ABC ∾ ∆A 1 B 1 C 1 , а также

AC и A 1 C 1 – сходственные стороны, k=2, то

Задачи на отношение треугольника

Дано : ∆ABC ∾ ∆A 1 B 1 C 1 , AC: A 1 C 1 =6:5

1.Пусть S A1B1C1 =x см 2 , S ABC =(x+77) см 2

2.Так как AC: A 1 C 1 =6:5 , то

3.По теореме об отношении площадей подобных треугольников:

Значит S A 1 B 1 C 1 = 175 см 2 , S ABC = 252 см 2

Ответ: S A 1 B 1 C 1 = 175 см 2 , S ABC = 252 см 2

Видео:Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать

Подобие треугольников (ч.2) | Математика | TutorOnline

Задачи на отношение треугольника

Задачи на отношение треугольникаЗадачи на отношение треугольникаЗадачи на отношение треугольникаЗадачи на отношение треугольника

Задачи на отношение треугольника

Поурочное планирование по геометрии для 8 класса. Ориентировано на работу с УМК Атанасян и др. Геометрия 8 класс. Глава VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. Урок 32. Отношение площадей подобных треугольников. Вернуться к Списку уроков Тематического планирования.

Видео:Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой РепетиторСкачать

Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой Репетитор

Урок 32. Отношение площадей
подобных треугольников

Основные дидактические цели урока: закрепить понятия пропорциональных отрезков и подобных треугольников; совершенствовать навыки решения задач на применение свойства биссектрисы треугольника и определения подобных треугольников; рассмотреть теорему об отношении площадей подобных треугольников и показать ее применение в процессе решения задач.

Ход урока

I. Организационный момент

(Учитель сообщает тему урока, формулирует цели урока.)

II. Актуализация знаний учащихся. Мотивация к учебной деятельности

1. Теоретический опрос.

(Один ученик оформляет доказательство теоремы на доске.)
1) Ответить на вопросы 1—3 учебника.
2) Доказать свойство биссектрисы треугольника.

2. Проверка домашнего задания.

(Учитель проверяет решение задач № 538, 542. Два ученика готовят решение на доске.)

Задача № 538

Задачи на отношение треугольника

  • В каком отношении биссектриса AD треугольника АВС делит сторону ВСР.
  • Что можно сказать об отношении отрезков АВ и АС?
  • Составьте уравнение, используя отношение отрезков АВ и АС и значение периметра треугольника АВС.

Задача № 542

Задачи на отношение треугольника

  • Какие треугольники называются подобными?
  • Чему равно отношение сходственных сторон MN и ВС, KN и AC?
  • Чему равны стороны треугольника KMN?

3. Работа по индивидуальным карточкам.

(3—6 учеников работают по карточкам.)

I уровень сложности

  1. Треугольники KPF и ЕМТ подобны, причем КР : ME = PF : МТ = КЕ : ЕТ, ∠F = 30°, ∠Е = 49°. Найдите остальные углы этих треугольников.
  2. Биссектриса BD делит сторону АС треугольника АВС на отрезки AD и CD, равные соответственно 7 см и 10,5 см. Найдите периметр треугольника АВС, если известно, что АВ = 9 см.

II уровень сложности

  1. ΔВВС подобен ΔАВС (рис. 7.3), AD = 16 см, DC = 9 см. ∠ABC и ∠BDA — тупые. Найдите ВС.
  2. Периметр треугольника равен 70 см, две его стороны равны 24 см и 32 см. Найдите отрезки, на которые биссектриса треугольника делит его третью сторону.

Задачи на отношение треугольника

III уровень сложности

  1. Диагональ АС делит трапецию ABCD на два подобных треугольника АВС и ACD, ВС = 8 см, AD = 18 см. Найдите АС.
  2. В равнобедренном треугольнике точка Е — середина основания АС, а точка К делит сторону ВС в отношении 2:5, считая от вершины С. Найдите отношение, в котором прямая BE делит отрезок АК.
  3. Решение задач по готовым чертежам для подготовки к восприятию нового материала (работа в парах).

Задачи на отношение треугольника

Задачи на отношение треугольника

Ответы и указания к задачам по готовым чертежам:

Задачи на отношение треугольника

(После окончания самостоятельного решения задач и самопроверки по готовым ответам выполняется самооценка.) Критерии оценивания:

  • оценка «5» — правильно решены три-четыре задачи;
  • оценка «4» — правильно решены две задачи;
  • оценка «3» — правильно решена одна задача;
  • оценка «2» — не ставится.

III. Работа по теме урока

(Учитель делит класс на группы для решения задания творческого характера. После завершения работы заслушиваются и обсуждаются варианты решений.)

Задание. Треугольники АВС и А1В1С1 подобны с коэффициентом подобия k. Найти отношение их площадей.

Задачи на отношение треугольника

Вывод. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

IV. Закрепление изученного материала

  1. Работа в рабочих тетрадях. Решить задачу № 54. (Учащиеся самостоятельно решают задачу, по окончании работы один ученик вслух читает задачу и ее решение. Учащиеся его слушают, а затем исправляют ошибки.)
  2. Решить задачу № 545 (работа в парах). (После завершения работы заслушиваются и обсуждаются варианты решений.)

Задача № 545

Задачи на отношение треугольника

Вопросы для обсуждения.

  • Чему равно отношение площадей подобных треугольников, если их сходственные стороны относятся как 6 : 5?
  • Верно ли составлено уравнение исходя из условий задачи?
  1. Решить задачи № 547, 548 (работа в группах). (После завершения работы заслушиваются и обсуждаются варианты решений.)

Задачи на отношение треугольника

V. Самостоятельная работа

I уровень сложности

Задачи на отношение треугольника

II уровень сложности

Задачи на отношение треугольника

III уровень сложности

Задачи на отношение треугольника

VI. Рефлексия учебной деятельности

  1. Какие треугольники называются подобными?
  2. Сформулируйте свойство биссектрисы треугольника.
  3. Что можно сказать о площадях подобных треугольников?

Домашнее задание

  1. П. 60, вопросы 4 (учебник, с. 158).
  2. Решить задачи № 543, 544, 546, 549.
  3. Решить дополнительные задачи.

I уровень сложности: В подобных треугольниках АВС и KMN равны углы В и М, С и N, АС = 3 см, KN = 6 см, MN = 4 см, ∠AX = 30°. Найдите ВС, ∠K; отношение площадей треугольников AВС и KMN; АЕ и BE, если известно, что СЕ — биссектриса треугольника АВС, АВ = 3,5 см.

II уровень сложности: В прямоугольном треугольнике ABC ∠C = 90°, ∠B = 30°, АВ = 12 см, CD — высота. Докажите, что ΔACD подобен ΔАВС, найдите отношение их площадей и отрезки, на которые биссектриса угла А делит катет ВС.

Вы смотрели: Поурочное планирование по геометрии для 8 класса. УМК Атанасян и др. (Просвещение). Глава VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. Урок 32. Отношение площадей подобных треугольников.

📸 Видео

Задача про соотношение сторон. Геометрия 7 класс.Скачать

Задача про соотношение сторон. Геометрия 7 класс.

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Решение задач на тему "Подобные треугольники". 8 классСкачать

Решение задач на тему "Подобные треугольники". 8 класс

Геометрия. 7 класс. Задача на отношение сторон треугольникаСкачать

Геометрия. 7 класс. Задача на отношение сторон треугольника

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | Математика

Геометрия 8 класс : Отношение площадей подобных треугольниковСкачать

Геометрия 8 класс : Отношение площадей подобных треугольников

Соотношения между сторонами и углами треугольника. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. 7 класс.

#57. Отношение площадей треугольников — самые надежные отношения!Скачать

#57. Отношение площадей треугольников — самые надежные отношения!

8 класс, 20 урок, Определение подобных треугольниковСкачать

8 класс, 20 урок, Определение подобных треугольников

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Соотношения между сторонами и углами треугольника. Практическая часть. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. Практическая часть. 7 класс.

Математика | Метрические соотношения в прямоугольном треугольникеСкачать

Математика | Метрические соотношения в прямоугольном треугольнике
Поделиться или сохранить к себе: