Центр тяжести однородного треугольника

Видео:координаты центра тяжести треугольникаСкачать

координаты центра тяжести треугольника

Центр тяжести треугольника

Этот онлайн калькулятор находит центроид, или барицентр (центр тяжести) треугольника по координатам его вершин

Центр тяжести (центр масс, барицентр) треугольника для треугольника с равномерно распределённой массой (или в вершинах которого находятся равные массы) находится в центроиде треугольника. Центроидом называется точка пересечения медиан треугольника. Центроид относится к так называемым замечательным точкам треугольника. Например, помимо того, что он является центром тяжести, он также делит каждую медиану в отношении 2:1, считая от вершины, а три отрезка прямых, соединяющих вершины треугольника с центроидом, разбивают данный треугольник на три равновеликих треугольника.

Чтобы вычислить положение центра тяжести по координатам вершин треугольника, достаточно вычислить среднее арифметическое координат вершин по оси x и по оси y, что и делает калькулятор ниже.

Видео:Центр тяжести треугольникаСкачать

Центр тяжести треугольника

Центры тяжести многоугольников и многогранников

Центром тяжести (или центром масс) некоторого тела называется точка, обладающая тем свойством, что если подвесить тело за эту точку, то оно будет сохранять свое положение.

Ниже рассмотрены двумерные и трёхмерные задачи, связанные с поиском различных центров масс — в основном с точки зрения вычислительной геометрии.

В рассмотренных ниже решениях можно выделить два основных факта. Первый — что центр масс системы материальных точек равен среднему их координат, взятых с коэффициентами, пропорциональными их массам. Второй факт — что если мы знаем центры масс двух непересекающихся фигур, то центр масс их объединения будет лежать на отрезке, соединяющем эти два центра, причём он будет делить его в то же отношении, как масса второй фигуры относится к массе первой.

Видео:Найдите центр тяжестиСкачать

Найдите центр тяжести

Двумерный случай: многоугольники

На самом деле, говоря о центре масс двумерной фигуры, можно иметь в виду одну из трёх следующих задач:

  • Центр масс системы точек — т.е. вся масса сосредоточена только в вершинах многоугольника.
  • Центр масс каркаса — т.е. масса многоугольника сосредоточена на его периметре.
  • Центр масс сплошной фигуры — т.е. масса многоугольника распределена по всей его площади.

Каждая из этих задач имеет самостоятельное решение, и будет рассмотрена ниже отдельно.

Центр масс системы точек

Это самая простая из трёх задач, и её решение — известная физическая формула центра масс системы материальных точек:

Центр тяжести однородного треугольника

где Центр тяжести однородного треугольника— массы точек, Центр тяжести однородного треугольника— их радиус-векторы (задающие их положение относительно начала координат), и Центр тяжести однородного треугольника— искомый радиус-вектор центра масс.

В частности, если все точки имеют одинаковую массу, то координаты центра масс есть среднее арифметическое координат точек. Для треугольника эта точка называется центроидом и совпадает с точкой пересечения медиан:

Центр тяжести однородного треугольника

Для доказательства этих формул достаточно вспомнить, что равновесие достигается в такой точке Центр тяжести однородного треугольника, в которой сумма моментов всех сил равна нулю. В данном случае это превращается в условие того, чтобы сумма радиус-векторов всех точек относительно точки Центр тяжести однородного треугольника, домноженных на массы соответствующих точек, равнялась нулю:

Центр тяжести однородного треугольника

и, выражая отсюда Центр тяжести однородного треугольника, мы и получаем требуемую формулу.

Центр масс каркаса

Будем считать для простоты, что каркас однороден, т.е. его плотность везде одна и та же.

Но тогда каждую сторону многоугольника можно заменить одной точкой — серединой этого отрезка (т.к. центр масс однородного отрезка есть середина этого отрезка), с массой, равной длине этого отрезка.

Теперь мы получили задачу о системе материальных точек, и применяя к ней решение из предыдущего пункта, мы находим:

Центр тяжести однородного треугольника

где Центр тяжести однородного треугольника— точка-середина Центр тяжести однородного треугольника-ой стороны многоугольника, Центр тяжести однородного треугольника— длина Центр тяжести однородного треугольника-ой стороны, Центр тяжести однородного треугольника— периметр, т.е. сумма длин сторон.

Для треугольника можно показать следующее утверждение: эта точка является точкой пересечения биссектрис треугольника, образованного серединами сторон исходного треугольника. (чтобы показать это, надо воспользоваться приведённой выше формулой, и затем заметить, что биссектрисы делят стороны получившегося треугольника в тех же соотношениях, что и центры масс этих сторон).

Центр масс сплошной фигуры

Мы считаем, что масса распределена по фигуре однородно, т.е. плотность в каждой точке фигуры равна одному и тому же числу.

Случай треугольника

Утверждается, что для треугольника ответом будет всё тот же центроид, т.е. точка, образованная средним арифметическим координат вершин:

Центр тяжести однородного треугольника

Случай треугольника: доказательство

Приведём здесь элементарное доказательство, не использующее теорию интегралов.

Первым подобное, чисто геометрическое, доказательство привёл Архимед, но оно было весьма сложным, с большим числом геометрических построений. Приведённое здесь доказательство взято из статьи Apostol, Mnatsakanian «Finding Centroids the Easy Way».

Доказательство сводится к тому, чтобы показать, что центр масс треугольника лежит на одной из медиан; повторяя этот процесс ещё дважды, мы тем самым покажем, что центр масс лежит в точке пересечения медиан, которая и есть центроид.

Разобьём данный треугольник Центр тяжести однородного треугольникана четыре, соединив середины сторон, как показано на рисунке:

Центр тяжести однородного треугольника

Четыре получившихся треугольника подобны треугольнику Центр тяжести однородного треугольникас коэффициентом Центр тяжести однородного треугольника.

Треугольники №1 и №2 вместе образуют параллелограмм, центр масс которого Центр тяжести однородного треугольникалежит в точке пересечения его диагоналей (поскольку это фигура, симметричная относительно обеих диагоналей, а, значит, её центр масс обязан лежать на каждой из двух диагоналей). Точка Центр тяжести однородного треугольниканаходится посередине общей стороны треугольников №1 и №2, а также лежит на медиане треугольника Центр тяжести однородного треугольника:

Центр тяжести однородного треугольника

Пусть теперь вектор Центр тяжести однородного треугольника— вектор, проведённый из вершины Центр тяжести однородного треугольникак центру масс Центр тяжести однородного треугольникатреугольника №1, и пусть вектор Центр тяжести однородного треугольника— вектор, проведённый из Центр тяжести однородного треугольникак точке Центр тяжести однородного треугольника(которая, напомним, является серединой стороны, на которой она лежит):

Центр тяжести однородного треугольника

Наша цель — показать, что вектора Центр тяжести однородного треугольникаи Центр тяжести однородного треугольникаколлинеарны.

Обозначим через Центр тяжести однородного треугольникаи Центр тяжести однородного треугольникаточки, являющиеся центрами масс треугольников №3 и №4. Тогда, очевидно, центром масс совокупности этих двух треугольников будет точка Центр тяжести однородного треугольника, являющаяся серединой отрезка Центр тяжести однородного треугольника. Более того, вектор от точки Центр тяжести однородного треугольникак точке Центр тяжести однородного треугольникасовпадает с вектором Центр тяжести однородного треугольника.

Искомый центр масс Центр тяжести однородного треугольникатреугольника Центр тяжести однородного треугольникалежит посередине отрезка, соединяющего точки Центр тяжести однородного треугольникаи Центр тяжести однородного треугольника(поскольку мы разбили треугольник Центр тяжести однородного треугольникана две части равных площадей: №1-№2 и №3-№4):

Центр тяжести однородного треугольника

Таким образом, вектор от вершины Центр тяжести однородного треугольникак центроиду Центр тяжести однородного треугольникаравен Центр тяжести однородного треугольника. С другой стороны, т.к. треугольник №1 подобен треугольнику Центр тяжести однородного треугольникас коэффициентом Центр тяжести однородного треугольника, то этот же вектор равен Центр тяжести однородного треугольника. Отсюда получаем уравнение:

Центр тяжести однородного треугольника

Центр тяжести однородного треугольника

Таким образом, мы доказали, что вектора Центр тяжести однородного треугольникаи Центр тяжести однородного треугольникаколлинеарны, что и означает, что искомый центроид Центр тяжести однородного треугольникалежит на медиане, исходящей из вершины Центр тяжести однородного треугольника.

Более того, попутно мы доказали, что центроид делит каждую медиану в отношении Центр тяжести однородного треугольника, считая от вершины.

Случай многоугольника

Перейдём теперь к общему случаю — т.е. к случаю мноугоугольника. Для него такие рассуждения уже неприменимы, поэтому сведём задачу к треугольной: а именно, разобьём многоугольник на треугольники (т.е. триангулируем его), найдём центр масс каждого треугольника, а затем найдём центр масс получившихся центров масс треугольников.

Окончательная формула получается следующей:

Центр тяжести однородного треугольника

где Центр тяжести однородного треугольника— центроид Центр тяжести однородного треугольника-го треугольника в триангуляции заданного многоугольника, Центр тяжести однородного треугольника— площадь Центр тяжести однородного треугольника-го треугольника триангуляции, Центр тяжести однородного треугольника— площадь всего многоугольника.

Триангуляция выпуклого многоугольника — тривиальная задача: для этого, например, можно взять треугольники Центр тяжести однородного треугольника, где Центр тяжести однородного треугольника.

Случай многоугольника: альтернативный способ

С другой стороны, применение приведённой формулы не очень удобно для невыпуклых многоугольников, поскольку произвести их триангуляцию — сама по себе непростая задача. Но для таких многоугольников можно придумать более простой подход. А именно, проведём аналогию с тем, как можно искать площадь произвольного многоугольника: выбирается произвольная точка Центр тяжести однородного треугольника, а затем суммируются знаковые площади треугольников, образованных этой точкой и точками многоугольника: Центр тяжести однородного треугольника. Аналогичный приём можно применить и для поиска центра масс: только теперь мы будем суммировать центры масс треугольников Центр тяжести однородного треугольника, взятых с коэффициентами, пропорциональными их площадям, т.е. итоговая формула для центра масс такова:

Центр тяжести однородного треугольника

где Центр тяжести однородного треугольника— произвольная точка, Центр тяжести однородного треугольника— точки многоугольника, Центр тяжести однородного треугольника— центроид треугольника Центр тяжести однородного треугольника, Центр тяжести однородного треугольника— знаковая площадь этого треугольника, Центр тяжести однородного треугольника— знаковая площадь всего многоугольника (т.е. Центр тяжести однородного треугольника).

Видео:Определение центра тяжести сложной фигуры. СопроматСкачать

Определение центра тяжести сложной фигуры. Сопромат

Трёхмерный случай: многогранники

Аналогично двумерному случаю, в 3D можно говорить сразу о четырёх возможных постановках задачи:

  • Центр масс системы точек — вершин многогранника.
  • Центр масс каркаса — рёбер многогранника.
  • Центр масс поверхности — т.е. масса распределена по площади поверхности многогранника.
  • Центр масс сплошного многогранника — т.е. масса распределена по всему многограннику.

Центр масс системы точек

Как и в двумерном случае, мы можем применить физическую формулу и получить тот же самый результат:

Центр тяжести однородного треугольника

который в случае равных масс превращается в среднее арифметическое координат всех точек.

Центр масс каркаса многогранника

Аналогично двумерному случаю, мы просто заменяем каждое ребро многогранника материальной точкой, расположенной посередине этого ребра, и с массой, равной длине этого ребра. Получив задачу о материальных точках, мы легко находим её решение как взвешенную сумму координат этих точек.

Центр масс поверхности многогранника

Каждая грань поверхности многогранника — двухмерная фигура, центр масс которой мы умеем искать. Найдя эти центры масс и заменив каждую грань её центром масс, мы получим задачу с материальными точками, которую уже легко решить.

Центр масс сплошного многогранника

Случай тетраэдра

Как и в двумерном случае, решим сначала простейшую задачу — задачу для тетраэдра.

Утверждается, что центр масс тетраэдра совпадает с точкой пересечения его медиан (медианой тетраэдра называется отрезок, проведённый из его вершины в центр масс противоположной грани; таким образом, медиана тетраэдра проходит через вершину и через точку пересечения медиан треугольной грани).

Почему это так? Здесь верны рассуждения, аналогичные двумерному случаю: если мы рассечём тетраэдр на два тетраэдра с помощью плоскости, проходящей через вершину тетраэдра и какую-нибудь медиану противоположной грани, то оба получившихся тетраэдра будут иметь одинаковый объём (т.к. треугольная грань разобьётся медианой на два треугольника равной площади, а высота двух тетраэдров не изменится). Повторяя эти рассуждения несколько раз, получаем, что центр масс лежит на точке пересечения медиан тетраэдра.

Эта точка — точка пересечения медиан тетраэдра — называется его центроидом. Можно показать, что она на самом деле имеет координаты, равные среднему арифметическому координат вершин тетраэдра:

Центр тяжести однородного треугольника

(это можно вывести из того факта, что центроид делит медианы в отношении Центр тяжести однородного треугольника)

Таким образом, между случаями тетраэдра и треугольника принципиальной разницы нет: точка, равная среднему арифметическому вершин, является центром масс сразу в двух постановках задачи: и когда массы находится только в вершинах, и когда массы распределены по всей площади/объёму. На самом деле, этот результат обобщается на произвольную размерность: центр масс произвольного симплекса (simplex) есть среднее арифметическое координат его вершин.

Случай произвольного многогранника

Перейдём теперь к общему случаю — случаю произвольного многогранника.

Снова, как и в двумерном случае, мы производим сведение этой задачи к уже решённой: разбиваем многогранник на тетраэдры (т.е. производим его тетраэдризацию), находим центр масс каждого из них, и получаем окончательный ответ на задачу в виде взвешенной суммы найденных центров масс.

Видео:Центр тяжестиСкачать

Центр тяжести

Центр тяжести в физике — формулы и определение с примерами

Центр тяжести (центр масс):

Любое твердое тело можно представить как состоящее из множества материальных точек, на каждую из которых действует сила тяжести.

Центр тяжести — геометрическая точка абсолютно твердого тела, через которую проходит равнодействующая всех сил тяжести, действующих на данное тело при любом его положении в пространстве.

На каждую точку тела в поле сил тяжести действует сила, а на все тело — равнодействующая этих сил. Точка приложения равнодействующей называется центром тяжести тела.

Центр масс (центр инерции) — точка, характеризующая распределение масс в теле или системе тел. Представляется она как материальная точка, в которой сосредоточена вся масса системы и на которую действуют все приложенные к системе внешние силы.

При определенных условиях положение центра тяжести тела совпадает с положением центра его масс.

Положение центра масс тела в однородном поле тяжести совпадает с положением его центра тяжести.

При небольших размерах тел возле поверхности Земли поле сил тяжести можно считать однородным, а силы, действующие на каждую точку тела, — параллельными.

Чтобы сила тяжести не вызывала движения, необходимо соблюдать определенные условия.

Положение центра масс тела в однородном поле тяжести | совпадает с положением его центра тяжести.

Если тело закреплено в одной точке, например подвешено или лежит на опоре и пребывает в покое, то центр тяжести и точка опоры лежат на одной вертикали: сила тяжести, действующая на тело, уравновешивается реакцией точки опоры.

Если тело закреплено в одной точке (подвешено или лежит на опоре) и пребывает в покое, то центр тяжести и точка опоры лежат на одной вертикали.

Рассмотрим примеры определения центра тяжести (центра масс) тел правильной несложной геометрической формы.

1. Найдем центр тяжести однородного стержня (рис. 2.48). Разделим стержень на несколько одинаковых небольших объемов (в нашем случае на пять слева и справа от середины стержня). Если добавить две параллельные силы, которые действуют на объемы 1 и 1′, то их равнодействующая будет расположена в точке О — середине стержня.

Центр тяжести однородного треугольника

Аналогично и для пар сил 2-2′, 3-3′ и т. д. На основании этого можно сделать вывод: центр тяжести однородного стержня 99 расположен в точке О — середине стержня.

Центр тяжести однородного стержня расположен в середине стержня.

2. Пользуясь рассмотренным выше приемом, можно установить, что центр тяжести однородного круга совпадает с его центром (рис. 2.49).

Центр тяжести однородного треугольника

Таким образом, в однородных телах, имеющих центр симметрии (прямоугольник или круглая пластинка, шар, цилиндр и т. д.), центр тяжести совпадает с центром симметрии. Центр тяжести может находиться и вне тела, например у кольца или спичечной коробки, мяча или пустого стакана.

Центр тяжести однородного круга совпадает с его центром.

Центр тяжести однородного треугольника находится в точке пересечения его медиан.

3. Найдем центр тяжести однородного треугольника (рис. 2.50), представим, что вся площадь треугольника поделена на узкие поло-
сы, параллельные любой из сторон треугольника, например АВ. Центр тяжести каждой такой полосы, как однородного стержня, находится в ее середине. Центр тяжести всего треугольника лежит где-то на медиане CD, которая проходит через середины всех отрезков, параллельных стороне АВ.

Если поделить треугольник на отрезки, параллельные стороне СВ, то с учетом предыдущих вычислений можно сделать вывод: центр тяжести треугольника будет лежать на медиане АЕ. На обеих медианах центр тяжести может лежать лишь в том случае, если он совпадает с точкой их пересечения О.

4. Чтобы найти центр тяжести плоской фигуры, надо ее подвесить за какую-нибудь точку 1; тогда фигура развернется так, что ее центр тяжести окажется на вертикали, которая проходит через точку подвеса (рис. 2.51).

Центр тяжести однородного треугольника

Отметив направление этой вертикали, подвесим фигуру за другую точку 2. И в этом случае фигура развернется так, чтобы центр тяжести находился на вертикали, проходящей через новую точку подвеса. Отметим направление и этой вертикали.

Центр тяжести плоской фигуры расположен в точке О пересечения вертикалей, проведенных через две любые точки подвеса.

Когда нужно определить центр сил тяжести сложных фигур, необходимо исходить из того, что сила тяжести равна сумме сил тяжести частей тела и всегда приложена к центру этих сил.

Видео:97 Медианы и центр тяжести треугольникаСкачать

97 Медианы и центр тяжести треугольника

Центр тяжести тела и центр масс тела

Когда мы рассматривали опыты с подвешенными телами, находящимися в равновесии, точка приложения сил натяжения была нам известна. А где приложена сила тяжести? В какой точке? Из этих опытов следует только то, что точка приложения силы тяжести при равновесии лежит на линии действия силы натяжения подвеса. Но это позволяет решить задачу о нахождении точки приложения силы тяжести экспериментальным путем. Если подвешивать плоское тело в разных точках (рис. 151), то линии действия сил натяжения пересекутся в одной точке С. Эта точка и будет точкой приложения силы тяжести. Она называется центром тяжести. Подобным образом можно определить положение центра тяжести не только плоского тела, но и любого другого.

Центр тяжести однородного треугольника
Рис. 151

Очевидно, что положение центра тяжести тел правильной формы можно указать, не выполняя описанный опыт. Так, например, центр тяжести однородного шара находится в его геометрическом центре, поскольку любой диаметр является осью симметрии шара. Центр тяжести круглого диска также находится в его геометрическом центре, как и центр тяжести обруча или кольца, и т. д. Последний пример показывает, что центр тяжести тела может находиться вне тела.

Положение центра тяжести тела можно и вычислить. Предварительно рассмотрим следующий опыт. Пусть тело состоит из двух шаров массами m1 и m2, насаженных на стержень (рис. 152, а). Если масса стержня значительно меньше масс шаров, то ею можно пренебречь. На каждый из шаров действуют силы тяжести, приложенные в их центре тяжести. Для того чтобы система находилась в равновесии, призму надо расположить так, чтобы линия действия силы реакции призмы проходила через центр тяжести этой системы — точку С. В этом случае суммарный момент сил относительно точки C равен нулю, т. е. выполняется условие:

Центр тяжести однородного треугольника

Центр тяжести однородного треугольника
Следовательно, центр тяжести делит расстояние между двумя грузами в отношении, обратном отношению их масс. Соотношение (1) можно получить и иначе. Поскольку момент сил тяжести равен нулю, то он должен быть равен нулю и относительно любой горизонтальной оси, проходящей, например, через точку О. Иначе тело вращалось бы вокруг этой оси. Обозначим расстояние между точками C и О через а. Тогда алгебраическая сумма моментов всех сил, действующих на тело, относительно точки О примет вид:
Центр тяжести однородного треугольника

Центр тяжести однородного треугольника
Рис. 152

Поскольку F=(m1 + m2)g, то после несложных преобразований получим соотношение (1). Такой подход позволяет находить положение центра тяжести аналитически.

Направим ось Ox вдоль стержня (рис. 152, б). Выберем начало отсчета в произвольной точке О. тогда координаты точек приложения сил соответственно будут х1, хс и х2. Запишем условие моментов относительно точки О:

Центр тяжести однородного треугольника

Центр тяжести однородного треугольника

При выводе этой формулы было использовано значение силы F = (m1 + m2) g. Таким образом, центр тяжести этой системы тел отстоит от точки О на расстоянии хс, определенном формулой (2).

Напомним, что выражение (2) является следствием правила моментов при равновесии тела, но в правой части отсутствует ускорение свободного падения. В него входят только координаты центра тяжести тел и их массы, поэтому точка, координата которой определяется формулой (2), называется центром масс тела. Следует отметить, что центр масс и центр тяжести совпадают, если тело находится в однородном гравитационном поле.

Понятие центра масс является более общим, чем понятие центра тяжести. Центр масс является характеристикой тела или системы тел, важной не только для задач, где речь идет о силе тяжести, но и для решения других физических проблем.

Если произвольное тело можно разбить на n элементов, массы которых m1, m2. mn, и если известны координаты центров масс этих элементов x1, x2. xn относительно выбранной системы координат, то координата центра масс тела вычисляется по формуле:

Центр тяжести однородного треугольника

Естественно, что такие же соотношения можно записать и для ус и zc. Для примера вычислим положение центра масс столярного угольника. Он состоит из деревянного бруска 1 и деревянной линейки 2, соединенных под прямым углом (рис. 153). Положим, что масса бруска 1 в два раза больше массы линейки (m1 = 2m2). Так как линейка и брусок — однородные параллелепипеды, то центры масс находятся в их геометрических центрах. Очевидно, что центр масс угольника находится где-то на линии, соединяющей центры масс бруска (C1) и линейки (C2).

Выберем наиболее оптимальным образом систему координат, как показано на рисунке. Тогда координаты центра масс бруска: х1 = 0, y1 =Центр тяжести однородного треугольника, а координаты центра масс линейки: Центр тяжести однородного треугольника, y2 = 0 .
По формуле (3): .

Центр тяжести однородного треугольника

Центр тяжести однородного треугольника

Таким образом, центр масс угольника находится вне тела.

Главные выводы:

  1. Центр тяжести — точка, в которой приложена сила тяжести.
  2. Центр масс симметричных однородных тел находится в их геометрическом центре.
  3. Координаты центра масс тела можно вычислить по формуле (3).
Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Импульс тела в физике
  • Замкнутая система в физике
  • Реактивное движение в физике
  • Освоение космоса — история, этапы и достижения с фотографиями
  • Международная система единиц СИ
  • Математика — язык физики
  • Законы Ньютона в физике
  • Гравитационные силы в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

💥 Видео

Центр тяжести. ЭкспериментСкачать

Центр тяжести. Эксперимент

Видеоурок 3. Определение центра тяжести.Скачать

Видеоурок 3. Определение центра тяжести.

Центр тяжести трапецииСкачать

Центр тяжести трапеции

Центры тяжести прямоугольных треугольниковСкачать

Центры тяжести прямоугольных треугольников

Механика | динамика | центр масс треугольникаСкачать

Механика | динамика | центр масс треугольника

Урок 79. Центр масс тела и методы определения его положенияСкачать

Урок 79. Центр масс тела и методы определения его положения

Определение центра тяжести сложных сечений. Фигуры из ГОСТ.Скачать

Определение центра тяжести сложных сечений. Фигуры из ГОСТ.

Определение координат центра тяжести сложной фигуры (плоского сечения)Скачать

Определение координат центра тяжести сложной фигуры (плоского сечения)

Определить центр тяжести однородной круглой пластинки радиусом R, в которой вырезано ...Скачать

Определить центр тяжести однородной круглой пластинки радиусом R, в которой вырезано ...

Определение центра тяжести плоской фигуры. Подробное объяснение. Сопромат для чайниковСкачать

Определение центра тяжести плоской фигуры. Подробное объяснение. Сопромат для чайников

Как найти центр тяжести любой фигуры?Скачать

Как найти центр тяжести любой фигуры?

Центр тяжести тела. Условия равновесия тел | Физика 7 класс #46 | ИнфоурокСкачать

Центр тяжести тела. Условия равновесия тел | Физика 7 класс #46 | Инфоурок

Практическая №5 Определение центра тяжести сложной фигурыСкачать

Практическая №5 Определение центра тяжести сложной фигуры

Урок 80. Определение положения центра масс телаСкачать

Урок 80. Определение положения центра масс тела
Поделиться или сохранить к себе: