Задачи на окружность с дугами

Задачи на окружность с дугами

Боковая сторона равнобедренного треугольника равна 4. Угол при вершине, противолежащий основанию, равен 120°. Найдите диаметр окружности, описанной около этого треугольника.

Воспользуемся теоремой косинусов:

Задачи на окружность с дугами

(здесь a и b — боковые стороны равнобедренного треугольника, c — основание.

Диаметр описанной окружности найдем по обобщенной теореме синусов:

Задачи на окружность с дугами

Вместо того, чтобы искать основание треугольника, можно было найти угол при основании. Действительно, сумма углов при основании данного равнобедренного треугольника равна 60°. Эти углы равны, поэтому каждый из них равен 30°. Применяя обобщенную теорему синусов для боковой стороны и противолежащего ей угла, получаем: Задачи на окружность с дугами

Приведем решение Андрея Ларионова.

Угол при основании равен Задачи на окружность с дугами

Следовательно, дуга описанной окружности, на которую он опирается, равна 2 · 30° = 60°. Эту дугу стягивает боковая сторона треугольника.

Хорда, стягивающая дугу в 60°, равна радиусу окружности, поэтому радиус описанной окружности равен боковой стороне треугольника, тогда D = 2 · 4 = 8.

Содержание
  1. Геометрия. Урок 5. Окружность
  2. Определение окружности
  3. Отрезки в окружности
  4. Дуга в окружности
  5. Углы в окружности
  6. Длина окружности, длина дуги
  7. Площадь круга и его частей
  8. Теорема синусов
  9. Примеры решений заданий из ОГЭ
  10. Теория и практика окружности
  11. Аналогично в каждом отрезке присутствует точка, вне окружности (О).
  12. Задача №1. Дано на рисунке:
  13. Достаточно вспомнить свойства центральных и вписанных углов.
  14. Ответ: 39°
  15. Задача №2. Дано на рисунке:
  16. Найти нужно меньшую дугу BD
  17. Ответ: 100°
  18. Найти меньшую дугу ВС
  19. Ответ: 114°
  20. Задача №4. Дано на рисунке:
  21. Найти отрезок МК
  22. Ответ: МК = 15.
  23. Задача №5. Дано на рисунке:
  24. Попробуй найти подобные треугольники
  25. Ответ: 6
  26. Задача №5. Дано на рисунке:
  27. Без свойства секущей и касательной здесь будет тяжело
  28. Ответ: 12√7.
  29. Я могу долго тебе показывать, как решать задачи, но без твоих усилий ничего не выйдет.
  30. О треугольниках О четырехуголниках
  31. 📽️ Видео

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Задачи на окружность с дугами

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Задачи на окружность с дугами

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:Длина дуги окружности. Практическая часть. 9 класс.Скачать

Длина дуги окружности. Практическая часть. 9 класс.

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:Длина окружности. 9 класс.Скачать

Длина окружности. 9 класс.

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Видео:ДЛИНА ОКРУЖНОСТИ и ПЛОЩАДЬ КРУГА 9 класс геометрия АтанасянСкачать

ДЛИНА ОКРУЖНОСТИ и ПЛОЩАДЬ КРУГА 9 класс геометрия Атанасян

Теория и практика окружности

Задачи на окружность с дугамиСвойство касательных.

Свойства касательных и секущих.

Площадь, сектор, длина окружности.

Задачи на окружности.

По статистике окружности никто не любит, но при этом леденец любим, солнце любим, давай и окружность полюбим!

Окружность − геометрическое место точек плоскости, равноудаленных от одной ее точки (центра). На рисунке центр − точка О.

В окружности может быть проведено 3 типа отрезка:

Задачи на окружность с дугами

Отрезок, проходящий через две точки окружности, но не через центр, называют хордой (AB).

Хорда, проходящая через центр окружности, называется диаметром (самая большая хорда в окружности − диаметр (D)).

Радиус − отрезок, соединяющий центр окружности с точкой на окружности. Диаметр в два раза больше радиуса (R).

А также две прямые снаружи от окружности:

Задачи на окружность с дугами

Касательная имеет одну общую точку с окружностью. Сразу стоит сказать о том, что радиус, проведенный в точку касания, будет иметь с касательной угол 90°.

Секущая пересекает окружность в двух точках, внутри окружности получается хорда или, в частном случае, диаметр.

Теперь чуть-чуть об углах и дугах:

Задачи на окружность с дугами

Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее. Он в два раза меньше дуги, на которую опирается.

Центральный угол — это угол, вершина которого находится в центре окружности, равен дуге на которую опирается.

Вписанные углы, опирающиеся на одну дугу, равны между собой (β=β=α/2) и равны половине дуги, на которую опираются.

Градусная мера дуги – величина в °, соответствует центральному углу. Длина дуги равна α.

Задачи на окружность с дугами

А вот такой угол НЕвписанный, такой угол «никто и звать никак».

Можно сделать вывод, что вписанный угол, который опирается на половину дуги окружности, будет прямым, а также будет опираться на диаметр:

Задачи на окружность с дугами

Любая пара углов, опирающихся на одну и ту же хорду, вершина которых находится по разные стороны от хорды, составляет в сумме 180°.

Задачи на окружность с дугами

Запишем основные свойства углов в окружности:

Задачи на окружность с дугами

Нашел что-то общее?

Если угол находится вне окружности, без разницы, чем он получен (касательной или секущей), то найти его можно через половину разности дуг.

Задачи на окружность с дугами

Если угол находится внутри окружности, то находим его через полусумму дуг.

Если есть одна дуга, которая находится на требуемом угле, то угол равен половине этой дуги.

Для любых двух хорд, проходящих через некоторую точку О, выполняет равенство:

Задачи на окружность с дугами

Для любых двух секущих, проходящих через некоторую точку O, выполняется равенство:

Задачи на окружность с дугами

Согласен, что они похожи, особенно если не смотреть на картинки.
Как не перепутать такие равенства? В каждом отрезке должна присутствовать точка, вне окружности (О).

Если из точки, лежащей вне окружности, проведены касательная и секущая:

Задачи на окружность с дугами

Аналогично в каждом отрезке присутствует точка, вне окружности (О).

Если теперь провести две касательные из точки O, то получим такие равные отрезки:

Задачи на окружность с дугами

Касательные равны, как, сообственно, и радиусы!

Площадь и длина окружности находятся по формуле:

Задачи на окружность с дугами

По своему определению число π показывает, во сколько раз длина окружности больше диаметра, отсюда такая формула: L = πD

Если хочешь вывести площадь круга, можешь проинтегрировать длину окружности относительно R или вывести зависимость, как сделал Архимед!

Задача №1. Дано на рисунке:

Задачи на окружность с дугами

Достаточно вспомнить свойства центральных и вписанных углов.

Задачи на окружность с дугами

Ответ: 39°

Задача №2. Дано на рисунке:

Задачи на окружность с дугами

Найти нужно меньшую дугу BD

Задачи на окружность с дугами

Ответ: 100°

Задача №3. Дано на рисунке:

Задачи на окружность с дугами

Найти меньшую дугу ВС

Задачи на окружность с дугами

Ответ: 114°

Задача №4. Дано на рисунке:

Задачи на окружность с дугами

Найти отрезок МК

Задачи на окружность с дугами

Ответ: МК = 15.

Задача №5. Дано на рисунке:

Задачи на окружность с дугами

Попробуй найти подобные треугольники

Задачи на окружность с дугами

Ответ: 6

Задача №5. Дано на рисунке:

Задачи на окружность с дугами

Без свойства секущей и касательной здесь будет тяжело

Задачи на окружность с дугами

Ответ: 12√7.

Я могу долго тебе показывать, как решать задачи, но без твоих усилий ничего не выйдет.

О треугольниках
О четырехуголниках

p.s. Не бойся ошибаться и задавать вопросы!

Если нашел опечатку, или что-то непонятно − напиши.

📽️ Видео

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Определение центра дуги окружности, построение окружности по 3 точкамСкачать

Определение центра дуги окружности, построение окружности по 3 точкам

7 класс, 21 урок, ОкружностьСкачать

7 класс, 21 урок, Окружность

Длина окружности. Практическая часть - решение задачи. 6 класс.Скачать

Длина окружности. Практическая часть - решение задачи. 6 класс.

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Задача на окружности из ОГЭ-2023!! Разбор за 30 секСкачать

Задача на окружности из ОГЭ-2023!! Разбор за 30 сек

Задачи на меры дуг(видео 5) |Окружность и Круг | ГеометрияСкачать

Задачи на меры дуг(видео 5) |Окружность и Круг | Геометрия
Поделиться или сохранить к себе: