Задачи биссектриса прямоугольных треугольников

Свойства биссектрисы прямоугольного треугольника

В данной публикации мы рассмотрим основные свойства биссектрисы прямоугольного треугольника, проведенной из прямого и острого углов, а также разберем примеры решения задач по данной теме.

Примечание: напомним, что прямоугольным называется треугольник, в котором один из углов прямой (т.е. равен 90°), а два остальных – острые ( Содержание скрыть

Видео:Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

Свойства биссектрисы прямоугольного треугольника

Свойство 1

Если в прямоугольном треугольнике известны катеты, то длину биссектрисы, проведенной из прямого угла к гипотенузе, можно вычислить по формуле:

Задачи биссектриса прямоугольных треугольников

Задачи биссектриса прямоугольных треугольников

Свойство 2

Длину биссектрисы в прямоугольном треугольнике, проведенную из острого угла к противолежащему катету, можно вычислить по формуле:

Задачи биссектриса прямоугольных треугольников

Задачи биссектриса прямоугольных треугольников

  • la – биссектриса к катету;
  • α – острый угол, из которого проведена биссектриса.

Также можно использовать другую формулу, если известны все три стороны треугольника:

Задачи биссектриса прямоугольных треугольников

Примечания:

  • Прямоугольный треугольник может быть равнобедренным, и в этом случае к нему, в т.ч., применимы свойства биссектрисы равнобедренного треугольника.
  • Общие свойства биссектрисы в любом треугольнике представлены в нашей публикации – “Определение и свойства биссектрисы угла треугольника”.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Примеры задач

Задача 1
Найдите длину биссектрисы, которая проведена к гипотенузе прямоугольного треугольника, если известно, что его катеты равны 21 и 28 см.

Решение
Воспользуемся формулой, приведенной в Свойстве 1, подставив в нее известные значения:

Задачи биссектриса прямоугольных треугольников

Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Вычислите длину биссектрисы, проведенной к катету с наименьшей длиной.

Решение
Пример катеты за “a” (9 см) и “b” (12 см).

Для начала найдем гипотенузу треугольника (c), воспользовавшись теоремой Пифагора, согласно которой квадрат гипотенузы равняется сумме квадратов катетов:
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, c = 15 см.

Теперь мы можем применить формулу, рассмотренную в Свойстве 2 для нахождения длины биссектрисы:

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Найдите биссектрису прямоугольного треугольника

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Все формулы биссектрисы прямоугольного треугольника

1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:

Задачи биссектриса прямоугольных треугольников

L — биссектриса, отрезок ME , исходящий из прямого угла (90 град)

a, b — катеты прямоугольного треугольника

с — гипотенуза

α — угол прилежащий к гипотенузе

Формула длины биссектрисы через катеты, ( L ):

Задачи биссектриса прямоугольных треугольников

Формула длины биссектрисы через гипотенузу и угол, ( L ):

Задачи биссектриса прямоугольных треугольников

2. Найти по формулам длину биссектрисы из острого угла на катет:

Задачи биссектриса прямоугольных треугольников

L — биссектриса, отрезок ME , исходящий из острого угла

a, b — катеты прямоугольного треугольника

с — гипотенуза

α , β — углы прилежащие к гипотенузе

Формулы длины биссектрисы через катет и угол, ( L ):

Задачи биссектриса прямоугольных треугольников

Задачи биссектриса прямоугольных треугольников

Формула длины биссектрисы через катет и гипотенузу, ( L ):

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Свойства биссектрисы прямоугольного треугольника

В данной публикации мы рассмотрим основные свойства биссектрисы прямоугольного треугольника, проведенной из прямого и острого углов, а также разберем примеры решения задач по данной теме.

Примечание: напомним, что прямоугольным называется треугольник, в котором один из углов прямой (т.е. равен 90°), а два остальных – острые ( Содержание скрыть

Видео:Свойство биссектрисы треугольника с доказательствомСкачать

Свойство биссектрисы треугольника с доказательством

Свойства биссектрисы прямоугольного треугольника

Свойство 1

Если в прямоугольном треугольнике известны катеты, то длину биссектрисы, проведенной из прямого угла к гипотенузе, можно вычислить по формуле:

Задачи биссектриса прямоугольных треугольников

Задачи биссектриса прямоугольных треугольников

Свойство 2

Длину биссектрисы в прямоугольном треугольнике, проведенную из острого угла к противолежащему катету, можно вычислить по формуле:

Задачи биссектриса прямоугольных треугольников

Задачи биссектриса прямоугольных треугольников

  • la – биссектриса к катету;
  • α – острый угол, из которого проведена биссектриса.

Также можно использовать другую формулу, если известны все три стороны треугольника:

Задачи биссектриса прямоугольных треугольников

Примечания:

  • Прямоугольный треугольник может быть равнобедренным, и в этом случае к нему, в т.ч., применимы свойства биссектрисы равнобедренного треугольника.
  • Общие свойства биссектрисы в любом треугольнике представлены в нашей публикации – “Определение и свойства биссектрисы угла треугольника”.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Примеры задач

Задача 1
Найдите длину биссектрисы, которая проведена к гипотенузе прямоугольного треугольника, если известно, что его катеты равны 21 и 28 см.

Решение
Воспользуемся формулой, приведенной в Свойстве 1, подставив в нее известные значения:

Задачи биссектриса прямоугольных треугольников

Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Вычислите длину биссектрисы, проведенной к катету с наименьшей длиной.

Решение
Пример катеты за “a” (9 см) и “b” (12 см).

Для начала найдем гипотенузу треугольника (c), воспользовавшись теоремой Пифагора, согласно которой квадрат гипотенузы равняется сумме квадратов катетов:
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, c = 15 см.

Теперь мы можем применить формулу, рассмотренную в Свойстве 2 для нахождения длины биссектрисы:

Видео:Прямоугольный треугольник. Часть 3. Биссектриса | Борис Трушин #shortsСкачать

Прямоугольный треугольник. Часть 3. Биссектриса | Борис Трушин #shorts

Биссектриса — свойства, признаки и формулы

Базовым понятием и одним из наиболее интересных и полезных объектов школьной математики является биссектриса. С её помощью доказываются многие положения планиметрии, упрощается решение задач.

Известные свойства позволяют рассматривать геометрические фигуры с разных точек зрения. Появляется вариативность при выборе пути доказательств.

Становится возможным использование инструмента алгебры, например, свойство пропорции, нахождение неизвестных величин, решение алгебраических уравнений при рассмотрении геометрических вопросов.

Видео:Построение биссектрисы в треугольникеСкачать

Построение биссектрисы в треугольнике

Что такое биссектриса в геометрии

Задачи биссектриса прямоугольных треугольников

Рассматривают луч, выходящий из вершины угла или его часть (отрезок), который делит угол пополам. Такой луч (или, соответственно, отрезок) называется биссектрисой.

Задачи биссектриса прямоугольных треугольников

Часто для треугольников определение немного сужают, говоря об отрезке, соединяющем вершину угла, делящем его пополам, с точкой на противолежащей стороне. При этом рассматривается внутренняя область фигуры.

В то же время, часто при решении задач используются прямые, делящие внешние углы на два равных.

Видео:Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать

Решение прямоугольных треугольников. Практическая часть. 8 класс.

Биссектриса прямоугольного треугольника

Для прямоугольного треугольника одна из биссектрис образует равные углы, величины которых хорошо просчитываются (45 градусов).

Задачи биссектриса прямоугольных треугольников

Это помогает вычислять углы при решении задач, связанных с фигурами, которые можно представить в виде прямоугольных треугольников или прямоугольников.

Задачи биссектриса прямоугольных треугольников

В тупоугольном треугольнике биссектриса делит больший угол на равные части, величина которых меньше 90 0 .

Видео:Формула для биссектрисы треугольникаСкачать

Формула для биссектрисы треугольника

Свойства биссектрисы треугольника

1. Каждая точка этой линии равноудалена от сторон угла. Часто эту характеристику выбирают в качестве определения, поскольку верно и обратное утверждение для любого произвольного треугольника. Это позволяет находить и радиус вписанной окружности.

2. Все внутренние отрезки, делящие углы пополам, пересекаются в одной точке, которая является центром окружности, вписанной в фигуру, т. е. точка пересечения находится на равных расстояниях от сторон.

Задачи биссектриса прямоугольных треугольников

Данное свойство позволяет решать целый класс разнообразных задач, выводить формулы для радиусов вписанных окружностей правильных многоугольников.

Благодаря этому утверждению, легко доказывается следующее правило:

Площадь описанного многоугольника равна:

где p – полупериметр, а r – радиус вписанной окружности.

Это позволяет находить решение не только планиметрических, но и стереометрических задач.

Важную роль играют внешние биссектрисы треугольника. Вместе с внутренними они образуют прямые углы;

3. Сумма величин двух прилежащих сторон, делённая на длину противолежащей стороны, задаёт отношение частей биссектрисы (считая от вершины), полученных точкой пересечения всех трёх соответствующих линий.

Некоторые виды геометрических фигур, в силу своих особенностей, порождают особые примечательные характеристики;

4. В равнобедренном треугольнике биссектриса, проведённая к основанию, одновременно является медианой и высотой. Две другие – равны между собой.

В этом случае основание параллельно внешней биссектрисе.

Обратное положение также имеет место. Если прямая проведена параллельно основанию равнобедренного треугольника через некоторую вершину, то внешняя биссектриса при этой вершине является частью этой линии;

5. Для равностороннего многоугольника важной характеристикой считается равенство всех биссектрис;

6. У правильного треугольника все внешние биссектрисы параллельны сторонам;

7. Выделяют несколько особенностей, среди которых есть следующая теорема:

«Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам».

Задачи биссектриса прямоугольных треугольников

Обратное утверждение («Прямая делит сторону на отрезки, пропорциональные двум другим сторонам») выражает признаки того, что рассматриваемая линия является внутренней биссектрисой;

8. Разносторонний треугольник позволяет определить взаимное расположение его высоты, медианы и биссектрисы, проведённых из одной точки. В частности, медиана и высота располагаются по разные стороны от третьей линии.

Видео:биссектриса прямоугольного треугольника #SHORTSСкачать

биссектриса прямоугольного треугольника #SHORTS

Все формулы биссектрисы в треугольнике

В зависимости от исходных данных, длина биссектрисы, проведённой к стороне C, lc, равна:

Задачи биссектриса прямоугольных треугольников

Видео:Построение биссектрисы угла. 7 класс.Скачать

Построение биссектрисы угла. 7 класс.

Примеры решения задач

Задача №1

В ΔABC ∠C = 90°, проведена биссектриса острого угла. Отрезок, соединяющий её основание с точкой пересечения медиан, перпендикулярен катету. Найти углы заданной фигуры.

Задачи биссектриса прямоугольных треугольников

Пусть ∠ACB = 90°, AD – биссектриса, BE – медиана, O – точка пересечения медиан, OD⊥BC.

Тогда OE : OB = 1 : 2по свойству медиан.

Так как OD⊥BC, то ODIIOC, следовательно, ΔBOD ∼ ΔBEC по второму признаку подобия, поэтому, по свойству подобных фигур, CD : DB = 1 : 2.

Это означает, что CA : AB = 1 : 2.

Так как катет равен половине гипотенузы, то ∠ABC = 30°, откуда ∠CAB = 60°.

Задача №2

Диагональ параллелограмма делит его острый угол пополам. Доказать, что этот параллелограмм является ромбом.

Задачи биссектриса прямоугольных треугольников

Так как ABCD – параллелограмм, то ∠DAC = ∠ACB, как накрест лежащие при параллельных прямых AD, BC и секущей AC.

По условию, ∠DAC = ∠ACB = ∠BAC, поэтому ΔACB равнобедренный, то есть AB = BC, следовательно, ABCD – ромб.

Видео:Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать

Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !

Задачи биссектриса прямоугольных треугольников

Задачи биссектриса прямоугольных треугольников

Учебный курсРешаем задачи по геометрии

Видео:Геометрия Найти биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18 смСкачать

Геометрия Найти биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18 см

Задача.

Биссектриса угла A треугольника ABC делит сторону BC на отрезки BK = 8 см и KC = 18 см. Определите длину стороны AC, если длина стороны AB = 12 см.

Решение.

Для решения задачи потребуется знание следующей теоремы:

Биссектриса любого внутреннего угла треугольника делит противоположную сторону на части, пропорциональные сторонам треугольника.

Для условий данной задачи это означает:

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Задача .

Найти отрезки, на которые биссектриса AD треугольника ABC делит сторону BC, если AB=6 BC=7 AC=8.

Решение.

Для решения задачи потребуется знание следующей теоремы:

Биссектриса любого внутреннего угла треугольника делит противоположную сторону на части, пропорциональные сторонам треугольника.

💥 Видео

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Найдите биссектрису прямоугольного треугольника с катетами 3 и 5 ★ Как решать?Скачать

Найдите биссектрису прямоугольного треугольника с катетами 3 и 5 ★ Как решать?

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 класс
Поделиться или сохранить к себе: