- Условие задачи:
- Найти площадь закрашенной области: S
- Ответ:
- Как определить площадь квадрата
- Формула нахождения площади квадрата
- Если известна длина стороны
- Если нам дана диагональ
- Если известен радиус вписанной окружности
- Если у нас есть радиус описанной окружности
- Если есть периметр
- S квадрата. Решение задач
- Онлайн калькулятор площади вписанного в круг квадрата. Как узнать площадь вписанного в круг квадрата.
- 🔍 Видео
Видео:Найти площадь квадрата описанного около окружности радиуса 19Скачать
Условие задачи:
Окружность вписана в квадрат. Найти площадь закрашенной области, если сторона квадрата равна 2 м.
Дано:
Сторона квадрата, a = 2 м
Пояснение к рисунку:
O — центр окружности
R — радиус окружности
D — диаметр окружности
Видео:ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематикаСкачать
Найти площадь закрашенной области: S
Площадь искомой области можно выразить как разницу между площадью квадрата и площадью круга
Неизвестен радиус окружности. Из рисунка видно, что сторона квадрата равна диаметру окружности и соответственно удвоенному радиусу
Выразим радиус окружности через сторону квадрата и подставив значение, получим радиус окружности.
Формула площади искомой области на основании выкладок выше, будет выглядеть следующим образом.
Подставив уже известные значения стороны квадрата и радиуса окружности, получаем.
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Ответ:
Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14
Если в уже полученное выражение подставить формулу площади круга выраженную через сторону квадрата и преобразовав, получим следующую формулу, в которой площадь закрашенной области, будет сразу выражена через сторону квадрата.
Видео:Задача — гроб. Меньше 1 людей могут её решитьСкачать
Как определить площадь квадрата
О чем эта статья:
3 класс, 8 класс
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:2 круга 1 квадрат ➜ Задача от @AndyMath ➜ Найдите площадь квадрата на рисункеСкачать
Формула нахождения площади квадрата
Квадрат — это фигура, которая является частным случаем прямоугольника, из-за чего можно заметить схожесть некоторых алгоритмов. Способ вычисления всегда зависит от исходных данных. Чтобы узнать площадь квадрата, необходимо знать специальные формулы, рассмотрим пять из них.
Видео:Длина окружности. Площадь круга - математика 6 классСкачать
Если известна длина стороны
Умножаем ее на то же число или возводим в квадрат.
S = a × a = a 2 , где S — площадь, a — сторона.
Эту формулу проходят в 3 классе. Остальные формулы третьеклассникам знать пока не нужно, но они пригодятся ученикам 8 класса.
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Если нам дана диагональ
Возводим ее в квадрат и делим на два.
S = d 2 : 2, где d — диагональ.
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
Если известен радиус вписанной окружности
Умножаем его квадрат на четыре.
S = 4 × r 2 , где r — это радиус вписанной окружности.
Видео:Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать
Если у нас есть радиус описанной окружности
Возведем его в квадрат и умножим на два.
S = 2 × R 2 , где R — это радиус описанной окружности.
У нас есть курсы обучения математике для учеников с 1 по 11 классы — записывайтесь!
Видео:Задание 24 Площадь описанного треугольникаСкачать
Если есть периметр
Мы должны возвести его в квадрат и разделить на 16.
S = Р 2 : 16, где Р — это периметр.
Периметр любого четырехугольника равен сумме длин всех его сторон.
Популярные единицы измерения площади:
- квадратный миллиметр (мм 2 );
- квадратный сантиметр (см 2 );
- квадратный дециметр (дм 2 );
- квадратный метр (м 2 );
- квадратный километр (км 2 );
- гектар (га).
Видео:Площадь круга. Математика 6 класс.Скачать
S квадрата. Решение задач
Мы разобрали пять формул для вычисления площади квадрата. А теперь давайте потренируемся!
Задание 1. Как найти площадь квадрата, диагональ которого равна 90 мм.
Воспользуемся формулой: S = d 2 : 2.
Подставим в формулу значение диагонали: S = 90 2 : 2 = 4050 мм 2 .
Ответ: 4050 мм 2 .
Задание 2. Окружность вписана в квадрат. Найдите площадь квадрата, если радиус окружности равен 24 см.
Если окружность вписана в квадрат, то сторона квадрата равна диаметру:
a = d
Диаметр окружности равен двум радиусам:
d = 2r
Получается, что сторона равна двум радиусам:
a = 2r
Используем формулу нахождения площади квадрата через сторону:
S = a 2
Так как из пункта 3 мы получили, что сторона равна двум радиусам, то формула площади квадрата примет вид:
S = (2r) 2
S = 4r 2
Теперь подставим значение радиуса в формулу площади:
S = 4 × 24 2 = 2304 см 2
Видео:Задача 6 №27624 ЕГЭ по математике. Урок 71Скачать
Онлайн калькулятор площади вписанного в круг квадрата. Как узнать площадь вписанного в круг квадрата.
Для того что бы найти площадь вписанного в круг квадрата, нам необходимо узнать длину ребра этого квадрата. Для этого нам необходимо разделить квадрат по диагонали на два равнобедренных треугольника, при этом основание у этих треугольников будет равно диаметру круга.
Следующим действиям мы должны определиться с известной нам величиной круга в которую вписан квадрат, а именно нам должна быть известна:
- либо площадь круга, обозначаемая буквой S,
- либо периметр круга, обозначаемый буквой P,
- либо радиус круга, обозначаемый буквой R,
- либо диаметр круга, обозначаемый буквой D.
Начнем по порядку, мы имеем равнобедренный прямоугольный треугольник и для того, что бы узнать длину его ребер нам необходимо воспользоваться теоремой Пифагора исходя из которой
Теперь для того что бы найти длину ребра треугольника (которое равно стороне нашего квадрата) нам необходимо узнать длину основания треугольника, которое равно диаметру круга
1. Если нам известна площадь круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
2. Если нам известна длина круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
3. Если нам известен радиус круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
Соответственно если мы знаем диаметр круга который равен основанию треугольника полученного путем разделения квадрата на две части по диагонали,
мы можем узнать длину сторон квадрата используя теорему Пифагора
после того как мы получили значение длины стороны вписанного квадрата равную a, для получения его площади нам необходимо полученное значение возвести в квадрат.
🔍 Видео
Задача первоклассника в 1 шаг! Невероятное решение!Скачать
Найти площадь квадрата вписанного в четверть окружности.Скачать
Найди площадь квадрата. Задача из японской геометрииСкачать
Задание 3 ЕГЭ по математике. Урок 47Скачать
Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Площадь треугольника через радиус описанной окружности: ОГЭ - ЕГЭСкачать
8 класс, 14 урок, Площадь треугольникаСкачать