Высота треугольника создает прямой угол

Высоты треугольника / Треугольники / Справочник по геометрии 7-9 класс

Высота треугольника создает прямой угол

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Высота треугольника. Свойство высоты прямоугольного треугольника

Определение 1 . Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника. Основанием высоты называют основание этого перпендикуляра (рис.1).

Высота треугольника создает прямой угол

На рисунке 1 изображена высота BD , проведённая из вершины B треугольника ABC . Точка D – основание высоты.

Для высоты прямоугольного треугольника, проведённой из вершины прямого угла, справедливо следующее утверждение.

Утверждение . Длина высоты прямоугольного треугольника, опущенной на гипотенузу, является средним геометрическим между длинами отрезков, на которые основание высоты делит гипотенузу (рис.2).

Высота треугольника создает прямой угол

Доказательство . Углы треугольников BCD и ACD (рис.2) удовлетворяют соотношениям

Высота треугольника создает прямой угол

Высота треугольника создает прямой угол

Высота треугольника создает прямой угол

Высота треугольника создает прямой угол

Таким образом, длина отрезка CD является средним геометрическим между длинами отрезков BD и AD , что и требовалось доказать.

Высоты можно провести из каждой вершины треугольника, однако у треугольников различных типов высоты располагаются по-разному, как показано в следующей таблице.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Видео

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Формулы равнобедренного треугольника

Формулы сторон равнобедренного треугольника

Высота треугольника создает прямой угол

b — основание равнобедренного треугольника

a — равные стороны равнобедренного треугольника

α — углы при основании

β — угол, образованный равными сторонами

Формулы длины стороны (основания b) равнобедренного треугольника

Высота треугольника создает прямой угол

Формулы длины равных сторон равнобедренного треугольника (стороны a):

Высота треугольника создает прямой угол

Формулы высоты, медианы, биссектрисы равнобедренного треугольника

Высота треугольника создает прямой угол

b — основание равнобедренного треугольника

a — равные стороны равнобедренного треугольника

α — углы при основании

β — угол, образованный равными сторонами

L — высота, биссектриса и медиана

Формулы высоты, биссектрисы и медианы равнобедренного треугольника, через сторону и угол (L)

Высота треугольника создает прямой угол

Формула высоты, биссектрисы и медианы равнобедренного треугольника, через стороны (L)

Высота треугольника создает прямой угол

Видео:ПРОБЛЕМНЫЕ ЗАДАЧИ #1 ЕГЭ 2024 с Высотой в Прямоугольном ТреугольникеСкачать

ПРОБЛЕМНЫЕ ЗАДАЧИ #1 ЕГЭ 2024 с Высотой в Прямоугольном Треугольнике

В треугольнике проведено две высоты

Высота треугольника создает прямой угол

Первый «неожиданный факт»:

Почему бы это? Да очень просто! У них общий угол ( displaystyle B) и оба – прямоугольные. Значит, подобны по двум углам.

Второй «неожиданный» факт:

Здесь тоже подобие по двум углам: ( angle 1=angle 2) (как вертикальные) и по прямому углу.

Высота треугольника создает прямой угол

Третий, по-настоящему неожиданный факт:

( Delta ABCsim Delta <_>B<_>) Высота треугольника создает прямой угол

Вот это уже интереснее, правда? Давай разбираться, почему так.

Видео:Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Остроугольный треугольник и высота

Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:

Высота треугольника создает прямой угол

Что видим теперь? Ещё подобные треугольники!

Как от двух линий вообще могут получиться столько подобных треугольников?!

Но тем не менее…

Видишь, какое богатство? И всё это может быть использовано в задачах!

Ну вот, теперь ты узнал что-то новенькое про высоты треугольника.

Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее — которое с косинусом, и то, что угол между высотами равен углу между сторонами…

Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести.

И тогда, если ты будешь точно знать, например, что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!

Видео:№576. Высота прямоугольного треугольника, проведенная из вершины прямого угла, делитСкачать

№576. Высота прямоугольного треугольника, проведенная из вершины прямого угла, делит

Свойства высоты в равностороннем треугольнике

Равносторонний треугольник — это треугольник, стороны которого, углы, высоты, медианы, оси симметрии и биссектрисы будут равны.

Такой треугольник является частным примером равнобедренного треугольника, но не наоборот.

Высоту в таком треугольнике можно найти с помощью следующей формулы:

h=a32 где а — сторона равностороннего треугольника.

Главным свойством, которым обладает высота равностороннего треугольника, является тот факт, что она равна медиане и биссектрисе:

а — сторона правильного равностороннего треугольника.

Видео:Высоты треугольника.Скачать

Высоты треугольника.

Что мы узнали?

Мы узнали, что такое высота треугольника, какие бывают высоты и как они обозначаются. Разобрались в типовых задачах и записали три формулы для высоты треугольника.

В отличие от медианы или биссектрисы, высота треугольника может быть расположена как внутри треугольника, так и вне его.

Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Высота треугольника создает прямой угол

На рисунке BF — высота, проведенная из вершины B к стороне AC.

Все три высоты треугольника пересекаются в одной точке. Эта точка называется ортоцентром треугольника.

Высота треугольника создает прямой угол

Высоты остроугольного треугольника расположены строго внутри треугольника.

Соответственно, точка пересечения высот также находится внутри треугольника.

В прямоугольном треугольнике две высоты совпадают со сторонами. (Это высоты, проведенные из вершин острых углов к катетам).

Высота, проведенная к гипотенузе, лежит внутри треугольника (позднее рассмотрим ее свойства).

Высота треугольника создает прямой угол

AC — высота, проведенная из вершины С к стороне AB.

AB — высота, проведенная из вершины B к стороне AC.

AK — высота, проведенная из вершины прямого угла А к гипотенузе ВС.

Высоты прямоугольного треугольника пересекаются в вершине прямого угла (А — ортоцентр).

В тупоугольном треугольника внутри треугольника лежит только одна высота — та, которая проведена из вершины тупого угла.

Две другие высоты лежат вне треугольника и опущены к продолжению сторон треугольника.

Высота треугольника создает прямой уголAK — высота, проведенная к стороне BC.

BF — высота, проведенная к продолжению стороны АС.

CD — высота, проведенная к продолжению стороны AB.

Точка пересечения высот тупоугольного треугольника также находится вне треугольника:

Видео:Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Свойства высоты прямоугольного треугольника

В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.

Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые ( Содержание скрыть

Видео:Запоминаем: высота, медиана биссектриса треугольникаСкачать

Запоминаем: высота, медиана биссектриса треугольника

Свойства высоты в прямоугольном треугольнике

Свойство 1

В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.

Высота треугольника создает прямой угол

Третья высота (h3) опускается на гипотенузу из прямого угла.

Свойство 2

Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.

Свойство 3

Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.

Высота треугольника создает прямой угол

Аналогичным образом доказывается, что ∠ABD = ∠DAC.

Свойство 4

В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:

1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:

Высота треугольника создает прямой угол

Высота треугольника создает прямой угол

2. Через длины сторон треугольника:

Высота треугольника создает прямой угол

Высота треугольника создает прямой угол

Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :

Высота треугольника создает прямой угол
Высота треугольника создает прямой угол

Высота треугольника создает прямой угол

Примечание: к прямоугольному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.

Видео:Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 класс

Пример задачи

Задача 1
Гипотенуза прямоугольного треугольника поделена высотой, проведенной к ней, на отрезки 5 и 13 см. Найдите длину этой высоты.

Решение
Воспользуемся первой формулой, представленной в Свойстве 4:

Высота треугольника создает прямой угол

Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Найдите длину высоты, проведенной к гипотенузе.

Решение
Для начала найдем длину гипотенузы по теореме Пифагора (пусть катеты треугольника – это “a” и “b”, а гипотенуза – “c”):
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, с = 15 см.

Теперь можно применить вторую формулу из Свойства 4, рассмотренного выше:

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Высота в прямоугольном треугольнике — свойства, признаки и формулы расчетов

Высота треугольника создает прямой угол

Видео:Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

Общие сведения

Следует отметить, что в геометрии существуют элементы, используя которые можно строить простые и сложные фигуры. Простейшим из них считается точка. С ее помощью можно создать прямую, луч, отрезок и угол. Точкой называется базовый «кирпич» геометрии, позволяющий осуществлять построение других элементов математической науки.

Высота треугольника создает прямой угол

Прямая — совокупность множества точек, лежащих в одной плоскости и соединенных между собой таким образом, чтобы образовалась некоторая линия без перегибов и переломов. У нее нет вообще границ. Если говорят, что нужно провести прямую, то чертится только ее часть, а затем обозначается произвольной строчной буквой (a, b, c и т. д.). Простейшая фигура не имеет начала и конца. Математически границы записываются следующим образом: (- ∞; ∞). Следовательно, левая граница находится в точке — ∞, а правая — ∞.

Луч — разновидность прямой линии, имеющей только одну границу (точку). Из последней исходит прямая в бесконечность. Примером этой модели является Солнце, испускающее пучки световой энергии. Оно является источником света, который может проходить не только через Солнечную систему, но и уходить за ее пределы в бесконечность (космическое пространство). Луч обозначается также строчной литерой. Однако точку-источник следует обозначать прописной буквой.

Отрезком является часть прямой или луча, имеющая некоторые ограничения. Они обозначаются прописными литерами. Моделями являются следующие объекты и процессы: луч Солнца, идущий к Земле (Солнце — Земля), линейка, карандаш и т. д.

Плоским углом называется элементарная фигура, состоящая из общей точки и двух лучей, исходящих из нее и не лежащих на одной прямой. Измеряется в градусах и радианах. Далее следует разобрать виды прямоугольных треугольников.

Видео:КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрия

Прямоугольный треугольник

Прямоугольным называется треугольник, имеющий угол, градусная мера которого эквивалентна 90. Он состоит из трех сторон, вершин и углов. К дополнительным параметрам можно отнести следующие:

Высота треугольника создает прямой угол

Стороны, образующие прямой угол, называются катетами. Третья сторона, соединяющая их, является гипотенузой. Все остальные углы являются острыми. Если сумма углов любого треугольника эквивалентна 180 градусам, то 180 — 90 = 90. Следовательно, сумма двух остальных углов составляет 90, а значит, они являются острыми.

Периметр — вспомогательная величина, характеризующая суммарное значение сторон фигуры. Существует также понятие полупериметра. Последним называется полусумма всех его сторон. Площадью называется характеристика треугольника, показывающая его размерность.

Высота в прямоугольном треугольнике, проведенная к гипотенузе — отрезок, опущенный перпендикулярно относительно этой стороны. Ее еще называют проекцией. Медиана — отрезок, соединяющий вершину с серединой стороны. Если она проведена из прямого угла, то эквивалентна половине гипотенузы. Биссектрисой является некоторая прямая, которая делит искомый угол на два равных значения.

Следует отметить, что этот тип треугольника бывает двух видов — разносторонний и равнобедренный. В последнем три последних параметра не совпадают (медиана, высота и биссектриса).

Следует рассмотреть свойства высоты в прямоугольном треугольнике равнобедренного типа. Она является медианой и биссектрисой. Далее следует обратить внимание на теорему, которая применяется для взаимосвязи сторон фигуры.

Теорема Пифагора

Для удобства треугольник следует обозначить символом «Δ». Связь между сторонами прямоугольного Δ была открыта древнегреческим ученым Пифагором. Утверждение имеет следующую формулировку: в произвольном прямоугольном Δ (со сторонами a, b и c) должно выполняться равенство между квадратом гипотенузы c и алгебраической суммой квадратов двух катетов a и b. Следует отметить, что при несоблюдении этого условия заданная фигура не содержит прямой угол. Математическая запись теоремы имеет такой вид: a^2 + b^2 = c^2.

Доказательств теоремы существует огромное количество, поскольку применяются различные подходы. Однако наибольшей популярностью пользуется способ, полученный из аксиом. Кроме того, дополнительно применяется алгебраическая методика. Для выполнения операции по доказательству соотношения a^2 + b^2 = c^2 необходимо построить прямоугольный Δ с такими сторонами: BC = a, AC = b и AB = c. После этого проводится высота к гипотенузе из вершины, которая является точкой пересечения двух катетов.

Высота треугольника создает прямой угол

В результате образовались два равных угла ∠АНС и ∠ВНС. Кроме того, они являются прямыми по свойству высоты. Затем нужно рассмотреть Δ АВС и Δ АСН (Δ СВН), которые подобны по двум углам. На основании признака подобия можно вывести такие соотношения в виде пропорций:

Далее нужно перемножить крайние и средние члены двух формул: а 2 = c * НВ и b 2 = c * AH. После этого для окончательного доказательства утверждения необходимо только сложить части. Получается равенство такого вида: а^2 + b 2 = c * [НВ + AH] = c 2 .

Утверждение о высоте

Для прямоугольного Δ и высоты была выведена специальная теорема, позволяющая оптимизировать процесс вычисления основных его параметров. Ее формулировка имеет следующий вид: в прямоугольном ΔABC высота CE, опущенная на гипотенузу, делит ее по соотношению квадратов катетов к частям гипотенузы. Для доказательства нужно использовать такой алгоритм:

Высота треугольника создает прямой угол

  • Построить ΔABC (∠C = 90).
  • Провести высоту к CE к гипотенузе AB.
  • Следует доказать соотношение BE / EA = (BC^2) / (AC^2).
  • Используя теорему о пропорциональности отрезков прямоугольного Δ, можно сделать вывод о подобии ΔABC и ΔACE.
  • На основании 4 пункта получается формула: CA / AB = EA / CA.
  • Перемножив крайние и средние члены по свойству пропорции, можно вывести CA^2 = AB * EA.
  • Нужно рассмотреть ΔABC и ΔBCE. Их подобие доказывается аналогично пункту 4.
  • Пропорция имеет такой вид: BC / AB = BE / BC. Окончательно: BC^2 = AB * BE.
  • Разделить полученные равенства в 8 и 6 пунктах на AC^2. Формулу можно править таким образом: BC^2 / AC^2 = BE / EA.

​Теорема доказана. Существуют и другие утверждения о высоте в прямоугольном Δ. Их необходимо также рассмотреть, но без доказательств.

Тригонометрические функции

Полезными при решении различных задач считаются тригонометрические функции. Их всего четыре:

Высота треугольника создает прямой угол

  • Синус (sin) эквивалентен отношению противолежащего катета к гипотенузе Δ: sin (∠CBA) = a / c.
  • Косинусом (cos) искомого угла называется величина, характеризующая отношение противолежащего катета к гипотенузе: cos (∠CBA) = b / c.
  • Тангенс (tg) — это значение отношения двух катетов (противолежащего к прилежащему): tg (∠CBA) = a / b.
  • Котангенс (ctg) является обратной величиной для функции tg (∠CBA). Он характеризует отношение прилежащего к противолежащему. Записывается в математическом виде следующим образом: ctg (∠CBA) = b / a или ctg (∠CBA) = 1 / (tg (∠CBA)= 1 / (a / b) = b / a.

Математики выделяют 4 обратные тригонометрические функции: arcsin, arccos, arctg и arcctg. Применяются они, когда получено одно из значений тригонометрической функции. На основании этого можно найти градусную меру угла. Расчет выполняется с использованием специальных таблиц (Брадиса) или при помощи онлайн-калькуляторов.

Другие соотношения

Формулы для нахождения длины высоты происходят от некоторых теорем. Их необходимо знать, поскольку это позволит существенно сэкономить время и избежать множества ошибок при вычислениях. Для этих целей необходимо начертить прямоугольный ΔABC, у которого ∠BAD = 90, а больший катет эквивалентен величине а. Основные теоремы о высоте, проведенной из прямого угла, имеют такие формулировки:

Высота треугольника создает прямой угол

  • Высота делит гипотенузу на проекции катетов: Ca = a^2 / c и Cb = b^2 / c.
  • Высота эквивалентна средней геометрической величине проекций катетов: h = [Сa * Cb]^(1/2).
  • Проведенная из угла 90 высота делит исходный треугольник на 2 ему подобных.
  • Длина искомой высоты соответствует отношению произведения катетов к линейному значению гипотенузы: h = (a * b) / c.
  • Если медиана проведена из угла прямого типа, то она эквивалентна 1/2 гипотенузы. Кроме того, ее основание совпадает с центром описанной около Δ окружности, радиус которой равен медиане.
  • Радиус вписанного круга в Δ эквивалентен соотношению r = (a + b — c) / 2.
  • Размерность прямоугольного Δ или площадь S соответствуют величине, равной 1/2 от произведения катетов: S = (1/2) * a * b.

Следует отметить, что величину размерности можно найти из производных формул: S = (1/2) * c^2 * sin(∠CBA) * sin(∠BAC) = (1/2) * c^2 * sin(∠CBA) * cos(∠CBA) = (1/2) * c^2 * sin(∠BAC) * cos(∠BAC) = (1/2) * a^2 * tg(∠BAC) = (1/2) * a^2 * ctg(∠CBA).

Видео:№155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABCСкачать

№155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABC

Примеры решения задач

Для закрепления теоретических знаний специалисты рекомендуют решить несколько задач. Они делятся на простые и сложные. Первые решаются при помощи одной или нескольких элементарных операций. Таких примеров в интернете очень много. Однако попадаются и сложные варианты, которые позволяют использовать полученные знания на все 100%.

В интернете встречаются онлайн-приложения, позволяющие найти решение. Этот инструмент нужно использовать для проверки результата. Хотя многие им злоупотребляют, а затем не получают правильного результата. Для начала необходимо взять готовый решенный пример и ознакомиться с ним. Далее попытаться воспроизвести его на бумаге. Подсматривать в исходник нельзя. При помощи такого приема происходит формирование алгоритма решения в головном мозге.

Сложное задание

Условие задачи следующее: имеется ΔMNO (∠MNO = 90) с высотой NP и стороной NM = 3, а также с известным значением тригонометрической функции cos между большим катетом и гипотенузой (cos(∠NOM) = (35)^(1/2) / 6). Следует найти OP. Для этого необходимо следовать такому алгоритму:

Высота треугольника создает прямой угол

  • Найти sin(∠NOM): [sin(∠NOM)]^2 + [cos(∠NOM)]^2 = 1. Отсюда следует, что sin(∠NOM) = [1 — [cos(∠NOM)]^2]^(1/2) = [1 — 35/36]^(1/2) = 1/6.
  • Вычислить длину гипотенузы: MO = MN / (sin(∠NOM)) = 3 / 1/6 = 18 (ед).
  • Рассмотреть ΔMNP: MN = 3, sin(∠NOM) = sin(∠MNP) = 1/6.
  • Найти MP: MP = MN * sin(∠MNP) = 3 * 1/6 = 1/2.
  • Искомая величина ОР высчитывается таким образом: OP = MO — MP = 18 — 1/2 = 17,5 (ед).

На основании пятого пункта можно сделать вывод, что длина искомого отрезка равна 17,5 (ед). Если проанализировать решение упражнения, то станет понятно, что очень часто применяются соотношения на основе тригонометрических функций.

Уровень турбо

В некоторых источниках задачи повышенной сложности называют «для турбо». К ним принадлежат все типы, которые имеют минимальный объем известных данных. Пусть дан равнобедренный ΔSTU (∠STU = 90). Гипотенуза на 2 больше катета. Необходимо найти его высоту TV, проведенную из прямого угла. Решение следует выполнять по такой инструкции:

  • Обозначить катет неизвестной «y», тогда ST = TU = y и SU = y + 2.
  • Записать формулу определения высоты: h = (a * b) / c.
  • Составить уравнение: (y + 2) = y^2 + y^2.
  • Раскрыть скобки и привести подобные слагаемые: y^2 + 4 * y + 4 — 2 * y^2 = -y^2 + 4 * y + 4 = y^2 — 4 * y — 4 = 0.
  • Найти величину дискриминанта: D = 16 + 16 = 32.
  • Первый корень: y1 = [-4 — 32^(1/2)] / 2 = [-4 — 4 * 2^(1/2)] / 2.
  • Второй: [-4 + 4 * 2^(1/2)] / 2 = -2 + 2 * 2^(1/2).
  • Первый не подходит, поскольку является величиной отрицательной.
  • ST = TU = -2 + 2 * 2^(1/2) и SU = -2 + 2 * 2^(1/2) + 2 = 2 * 2^(1/2).
  • Расчет высоты TV: TV = (-2 + 2 * 2^(1/2))^2 / 2 * 2^(1/2) = (4 — 8 * 2^(1/2) + 2) / 2 * 2^(1/2) = (6 — 8 * 2^(1/2)) / 2 * 2^(1/2) = 3 — 4 * 2^(1/2) / 2^(1/2) (ед).

Следует отметить, что в скобках необходимо указывать единицу измерения. Если размерность последней не дана, то нужно указывать ее условно.

Таким образом, для решения сложных задач по геометрии следует знать формулу высоты в прямоугольном треугольнике. Это позволяет оптимизировать решение и не совершать ошибок при вычислениях.

🎦 Видео

Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬСкачать

Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬ

Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис ТрушинСкачать

Как найти длину биссектрисы, медианы и высоты?  | Ботай со мной #031 | Борис Трушин

Высоты в треугольнике создают подобные треугольники. Какие углы равны? Как относятся стороны?Скачать

Высоты в треугольнике создают подобные треугольники. Какие углы равны? Как относятся стороны?

ЕГЭ база #15 / Треугольники и их элементы / Угол между биссектрисой, медианой и высотой / решу егэСкачать

ЕГЭ база #15 / Треугольники и их элементы / Угол между биссектрисой, медианой и высотой / решу егэ

Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

Как построить высоту в треугольнике?Скачать

Как построить высоту в треугольнике?
Поделиться или сохранить к себе: