Пирамида — геометрическая пространственная фигура, характеристики которой изучают в старших классах школы в курсе стереометрии. В данной статье рассмотрим треугольную пирамиду, ее виды, а также формулы для расчета площади ее поверхности.
Видео:Найти высоту боковой грани в правильной треугольной пирамидеСкачать
О какой пирамиде пойдет речь?
Треугольная пирамида представляет собой фигуру, которую можно получить, если соединить все вершины произвольного треугольника с одной единственной точкой, не лежащей в плоскости этого треугольника. Согласно этому определению рассматриваемая пирамида должна состоять из исходного треугольника, который называется основанием фигуры, и трех боковых треугольников, которые имеют по одной общей стороне с основанием и соединены друг с другом в точке. Последняя называется вершиной пирамиды.
Вам будет интересно: Защита проекта: образец. Темы для защиты проекта. Требования к проектной работе
Рисунок выше демонстрирует произвольную треугольную пирамиду.
Рассматриваемая фигура может быть наклонной или прямой. В последнем случае перпендикуляр, опущенный из вершины пирамиды на ее основание, должен его пересекать в геометрическом центре. Геометрическим центром любого треугольника является точка пересечения его медиан. Геометрический центр совпадает с центром масс фигуры в физике.
Если в основании прямой пирамиды будет лежать правильный (равносторонний) треугольник, то она называется правильной треугольной. В правильной пирамиде все боковые стороны равны друг другу и представляют собой равносторонние треугольники.
Если высота правильной пирамиды такова, что ее боковые треугольники становятся равносторонними, то она называется тетраэдром. В тетраэдре все четыре грани равны друг другу, поэтому каждая из них может полагаться основанием.
Видео:№246. Высота треугольной пирамиды равна 40 см, а высота каждой боковой грани, проведеннаяСкачать
Элементы пирамиды
К этим элементам относятся грани или стороны фигуры, ее ребра, вершины, высота и апофемы.
Как было показано, все стороны треугольной пирамиды являются треугольниками. Их число равно 4 (3 боковых и один в основании).
Вершины — это точки пересечения трех треугольных сторон. Не сложно догадаться, что для рассматриваемой пирамиды их 4 (3 принадлежат основанию и 1 — вершина пирамиды).
Ребра можно определить, как линии пересечения двух треугольных сторон, или как линии, которые соединяют каждые две вершины. Количество ребер соответствует удвоенному числу вершин основания, то есть для треугольной пирамиды оно равно 6 (3 ребра принадлежат основанию и 3 ребра образованы боковыми гранями).
Высота, как выше было отмечено, является длиной перпендикуляра, проведенного из вершины пирамиды к ее основанию. Если из этой вершины провести высоты к каждой из сторон треугольного основания, то они будут называться апотемами (или апофемами). Таким образом, пирамида треугольная имеет одну высоту и три апофемы. Последние равны друг другу для правильной пирамиды.
Видео:КАК НАЙТИ ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ ПИРАМИДЫ?Скачать
Основание пирамиды и его площадь
Поскольку основание для рассматриваемой фигуры в общем случае представляет собой треугольник, то для расчета его площади достаточно найти его высоту ho и длину стороны основания a, на которую она опущена. Формула для площади So основания имеет вид:
Если треугольник основания является равносторонним, тогда площадь основания треугольной пирамиды вычисляется по такой формуле:
То есть площадь So однозначно определяется длиной стороны a треугольного основания.
Видео:Найти площадь боковой поверхности правильной треугольной пирамидыСкачать
Боковая и общая площадь фигуры
Прежде чем рассматривать площадь треугольной пирамиды, полезно привести ее развертку. Она изображена на рисунке ниже.
Площадь этой развертки, образованной четырьмя треугольниками, является общей площадью пирамиды. Один из треугольников соответствует основанию, формула для рассматриваемой величины которого была записана выше. Три боковых треугольных грани в сумме образуют боковую площадь фигуры. Поэтому для определения этой величины достаточно к каждому из них применить записанную выше формулу для произвольного треугольника, а затем, сложить три полученных результата.
Если пирамида является правильной, то расчет площади боковой поверхности облегчается, поскольку все грани боковые представляют собой одинаковые равносторонние треугольники. Обозначим hb длину апотемы, тогда площадь боковой поверхности Sb можно определить так:
Эта формула следует из общего выражения для площади треугольника. Цифра 3 появилась в числители из-за того, что пирамида имеет три боковых грани.
Апотему hb в правильной пирамиде можно вычислить, если известна высота фигуры h. Применяя теорему Пифагора, получаем:
Очевидно, что общая площадь S поверхности фигуры равна сумме ее площадей боковой поверхности и основания:
Для правильной пирамиды, подставляя все известные величины, получаем формулу:
S = √3/4*a2 + 3/2*a*√(h2 + a2/12)
Площадь пирамиды треугольной зависит только от длины стороны ее основания и от высоты.
Видео:10 класс, 33 урок, Правильная пирамидаСкачать
Пример задачи
Известно, что боковое ребро треугольной пирамиды равно 7 см, а сторона основания составляет 5 см. Необходимо найти площадь поверхности фигуры, если известно, что пирамида является правильной.
Воспользуемся равенством общего вида:
Площадь So равна:
So = √3/4*a2 = √3/4*52 ≈ 10,825 см2.
Для определения площади боковой поверхности, необходимо найти апотему. Не сложно показать, что через длину бокового ребра ab она определяется по формуле:
hb = √(ab2 — a2/4) = √(7 2 — 52/4) ≈ 6,538 см.
Тогда площадь Sb равна:
Sb = 3/2*a*hb = 3/2*5*6,538 = 49,035 см2.
Общая площадь пирамиды составляет:
S = So + Sb = 10,825 + 49,035 = 59,86 см2.
Заметим, что при решении задачи мы не использовали в расчетах значение высоты пирамиды.
Видео:ВЫСОТА ТРЕУГОЛЬНИКА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Пирамида
Пирамида – многогранник, основание которого — многоугольник , а остальные грани — треугольники, имеющие общую вершину.
По числу углов основания различают пирамиды треугольные , четырёхугольные и т. д.
Вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания.
Основание — многоугольник, которому не принадлежит вершина пирамиды.
Апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины.
Высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).
Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания.
Видео:№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторонаСкачать
Некоторые свойства пирамиды
1) Если все боковые ребра равны, то
– около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр
– боковые ребра образуют с плоскостью основания равные углы
Верно и обратное.
Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.
Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.
2) Если все грани пирамиды наклонены к плоскости основания под одним углом , то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр
Верно и обратное.
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Виды пирамид
Пирамида называется правильной , если основанием её является правильный многоугольник, а вершина проецируется в центр основания.
Для правильной пирамиды справедливо:
– боковые ребра правильной пирамиды равны;
– в правильной пирамиде все боковые грани — равные равнобедренные треугольники;
– в любую правильную пирамиду можно вписать сферу;
– около любой правильной пирамиды можно описать сферу;
– площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.
Видео:Площадь треугольника. Как найти площадь треугольника?Скачать
Пирамида называется прямоугольной , если одно из боковых рёбер пирамиды перпендикулярно основанию. Тогда это ребро и есть высота пирамиды.
Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.
Тетраэдр – треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды.
Видео:Найти высоту, проведенную к боковой стороне равнобедренного треугольника.Скачать
Высота боковой грани треугольника
Пирамида — (от греч. pyramis, род. п. pyramidos), многогранник,
основание которого многоугольник, а остальные грани треугольники, имеющие
общую вершину. По числу углов основания различают пирамиды треугольные,
четырехугольные и т. д.
Общая вершина боковых граней называется вершиной пирамиды. Высотой
пирамиды называется перпендикуляр, опущенный из вершины пирамиды на
плоскость основания.
– многогранник, основание которого – многоугольник, а остальные грани – треугольники, имеющие общую вершину. Пирамида является частным случаем конуса .
Пирамида называется правильной, если её основанием является правильный многоугольник, а вершина проецируется в центр основани
Если все боковые ребра равны, то:
- около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
- боковые ребра образуют с плоскостью основания равные углы.
- также верно и обратное, то есть если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.
Если боковые грани наклонены к плоскости основания под одним углом, то:
- в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
- высоты боковых граней равны;
- площадь боковой поверхности равна половине произведения периметра
- Объём пирамиды может быть вычислен по формуле:
где — площадь основания и — высота;
- Боковая поверхность — это сумма площадей боковых граней:
- Полная поверхность — это сумма площади боковой поверхности и площади основания:
- Для нахождения боковой поверхности в правильной пирамиде можно использовать формулы:
где — апофема , — периметр основания, — число сторон основания, — боковое ребро, — плоский угол при вершине пирамиды.
Видео:КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать
Особые случаи пирамиды
Правильная пирамида
Пирамида называется правильной, если основанием её является правильный многоугольник , а вершина проецируется в центр основания. Тогда она обладает такими свойствами:
- боковые ребра правильной пирамиды равны;
- в правильной пирамиде все боковые грани — равные равнобедренные треугольники;
- в любую правильную пирамиду можно как вписать, так и описать около неё сферу;
- если центры вписанной и описанной сферы совпадают, то сумма плоских углов при вершине пирамиды равна , а каждый из них соответственно , где n — количество сторон многоугольника основания [6] ;
- площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.
Прямоугольная пирамида
Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.
Усечённая пирамида
Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.
📺 Видео
№492. Найдите высоты треугольника со сторонами 10 см, 10 см и 12 см.Скачать
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
№157. В равнобедренном треугольнике основание больше боковой стороны на 2 см, но меньше суммы боковыСкачать
№107. В равнобедренном треугольнике основание в два раза меньше боковой стороны, а периметрСкачать
Формулы равностороннего треугольника #shortsСкачать
10 класс, 30 урок, ПризмаСкачать
👉 ФОРМУЛА ГЕРОНА. Площадь треугольника #shortsСкачать
№257. Высота правильной треугольной пирамиды равна h, а двугранный угол при стороне основанияСкачать
Высота в прямоугольном треугольнике. 8 класс.Скачать