Определение 1. Многоугольник называется выпуклым, если при проведении прямой через любую из его сторон весь многоугольник лежит только по одну сторону от этой прямой. Невыпуклыми являются все остальные многоугольники.
Определение 2. Многоугольник называется выпуклым, если при выборе любых двух его внутренних точек и при соединении их отрезком все точки отрезка являются также внутренними точками многоугольника.
Видео:Выпуклые и невыпуклые многоугольникиСкачать
Многоугольники
На этом уроке мы приступим уже к новой теме и введем новое для нас понятие «многоугольник». Мы рассмотрим основные понятия, связанные с многоугольниками: стороны, вершины углы, выпуклость и невыпуклость. Затем докажем важнейшие факты, такие как теорема о сумме внутренних углов многоугольника, теорема о сумме внешних углов многоугольника. В итоге, мы вплотную подойдем к изучению частных случаев многоугольников, которые будут рассматриваться на дальнейших уроках.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Основы геометрии»
Видео:Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.Скачать
Выпуклый многоугольник: определение, элементы, свойства, примеры
Видео:8 класс, 2 урок, Выпуклый многоугольникСкачать
Содержание:
А выпуклый многоугольник Это геометрическая фигура, содержащаяся в плоскости, которая характеризуется тем, что все ее диагонали находятся внутри, а ее углы составляют менее 180 °. Среди его свойств можно выделить следующие:
1) Он состоит из n последовательных сегментов, в которых последний из сегментов соединяется с первым. 2) Ни один из сегментов не пересекается таким образом, чтобы ограничить плоскость во внутренней и внешней областях. 3) Каждый угол во внутренней области строго меньше плоского угла.
Простой способ определить, является ли многоугольник выпуклым или нет, — это рассмотреть линию, проходящую через одну из его сторон, которая определяет две полуплоскости. Если на каждой линии, проходящей через одну сторону, другие стороны многоугольника находятся в одной полуплоскости, то это выпуклый многоугольник.
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Элементы многоугольника
Каждый многоугольник состоит из следующих элементов:
Стороны — это каждый из последовательных сегментов, составляющих многоугольник. В многоугольнике ни один из составляющих его сегментов не может иметь открытого конца, в этом случае будет многоугольная линия, но не многоугольник.
Вершины — это точки соединения двух последовательных отрезков. В многоугольнике количество вершин всегда равно количеству сторон.
Если две стороны или сегменты многоугольника пересекаются, значит, у вас есть перекрещенный многоугольник. Точка пересечения не считается вершиной. Поперечный многоугольник — это невыпуклый многоугольник. Звездообразные многоугольники являются перекрестными многоугольниками и поэтому не являются выпуклыми.
Когда у многоугольника все стороны одинаковой длины, мы получаем правильный многоугольник. Все правильные многоугольники выпуклые.
Видео:Выпуклый многоугольник | Геометрия 7-9 класс #40 | ИнфоурокСкачать
Выпуклые и невыпуклые многоугольники
На рисунке 1 показано несколько многоугольников, некоторые из них выпуклые, а некоторые — нет. Разберем их:
Номер 1 — это трехсторонний многоугольник (треугольник), а все внутренние углы меньше 180 °, поэтому это выпуклый многоугольник. Все треугольники — выпуклые многоугольники.
Число 2 — это четырехсторонний многоугольник (четырехугольник), в котором ни одна из сторон не пересекается, а каждый внутренний угол меньше 180 °. Тогда это будет выпуклый многоугольник с четырьмя сторонами (выпуклый четырехугольник).
С другой стороны, число 3 представляет собой многоугольник с четырьмя сторонами, но один из его внутренних углов больше 180 °, поэтому он не удовлетворяет условию выпуклости. То есть это невыпуклый четырехсторонний многоугольник, называемый вогнутым четырехугольником.
Число 4 представляет собой многоугольник с четырьмя отрезками (сторонами), два из которых пересекаются. Четыре внутренних угла меньше 180 °, но поскольку две стороны пересекаются, получается невыпуклый перекрещенный многоугольник (перекрещенный четырехугольник).
Другой случай — число 5. Это многоугольник с пятью сторонами, но поскольку один из его внутренних углов больше 180 °, мы получаем вогнутый многоугольник.
Наконец, число 6, у которого также есть пять сторон, имеет все внутренние углы меньше 180º, поэтому это выпуклый многоугольник с пятью сторонами (выпуклый пятиугольник).
Видео:Чему равна сумма углов выпуклого многоугольникаСкачать
Свойства выпуклого многоугольника
1. Непересекающийся многоугольник или простой многоугольник делит содержащую его плоскость на две области. Внутренняя область и внешняя область, многоугольник является границей между двумя областями.
Но если многоугольник дополнительно выпуклый, тогда у нас есть внутренняя область, которая является односвязной, что означает, что, взяв любые две точки из внутренней области, он всегда может быть соединен сегментом, который полностью принадлежит внутренней области.
2- Каждый внутренний угол выпуклого многоугольника меньше плоского угла (180º).
3- Все внутренние точки выпуклого многоугольника всегда принадлежат одной из полуплоскостей, определяемых линией, проходящей через две последовательные вершины.
4- В выпуклом многоугольнике все диагонали полностью содержатся во внутренней многоугольной области.
5- Внутренние точки выпуклого многоугольника полностью принадлежат выпуклому угловому сектору, определяемому каждым внутренним углом.
6. Каждый многоугольник, все вершины которого находятся на окружности, является выпуклым многоугольником, который называется циклическим многоугольником.
7- Каждый циклический многоугольник является выпуклым, но не каждый выпуклый многоугольник является циклическим.
8- Каждый непересекающийся многоугольник (простой многоугольник), все стороны которого равны, является выпуклым и известен как правильный многоугольник.
Видео:Многоугольники. Математика 8 класс | TutorOnlineСкачать
Диагонали и углы в выпуклых многоугольниках
9- Общее количество N диагоналей выпуклого многоугольника с n сторонами определяется по следующей формуле:
Доказательство. В выпуклом многоугольнике с n сторонами каждой вершины нарисовано n — 3 диагоналей, так как сама вершина и две соседние вершины исключены. Поскольку имеется n вершин, всего нарисовано n (n — 2) диагоналей, но каждая диагональ была нарисована дважды, поэтому количество диагоналей (без повторения) равно n (n-2) / 2.
10- Сумма S внутренних углов выпуклого многоугольника с n сторонами определяется следующим соотношением:
Доказательство. Из вершины выводятся n-3 диагонали, определяющие n-2 треугольника. Сумма внутренних углов каждого треугольника составляет 180º. Общая сумма углов n-2 треугольников равна (n-2) * 180º, что совпадает с суммой внутренних углов многоугольника.
Видео:1002 Выпуклые и невыпуклые многоугольникиСкачать
Примеры
Видео:№365. Сколько сторон имеет выпуклый многоугольник, каждый угол которого равенСкачать
Пример 1
Циклический шестиугольник — это многоугольник с шестью сторонами и шестью вершинами, но все вершины находятся на одной окружности. Каждый циклический многоугольник выпуклый.
Видео:Многоугольники. 8 класс.Скачать
Пример 2
Определите значение внутренних углов обычного энегона.
Решение: enegon — это 9-сторонний многоугольник, но если он также правильный, все его стороны и углы равны.
Сумма всех внутренних углов 9-стороннего многоугольника равна:
S = (9 — 2) 180º = 7 * 180º = 1260º
Но существует 9 внутренних углов одинаковой меры α, поэтому должно выполняться равенство:
Отсюда следует, что мера α каждого внутреннего угла правильного ребра равна:
α = 1260º/9 = 140º
47 лучших фраз о форме воды
Пограничные проблемы Венесуэлы с Колумбией, Бразилией и Гайаной
🔍 Видео
Вогнутые и выпуклые многоугольникиСкачать
Многогранник. 11 класс.Скачать
Что такое выпуклый четырёхугольник? | Математика 8 класс | Геометрия 8 класс | МегаШколаСкачать
41. Выпуклый многоугольникСкачать
Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Геометрия 8 класс (Урок№1 - Многоугольники. Четырёхугольник.)Скачать
Геометрия 10 класс (Урок№13 - Многогранник.)Скачать
№363. Начертите выпуклые пятиугольник и шестиугольник. В каждом многоугольникеСкачать
Какой многоугольник называется выпуклым? Геометрия 8 класс. Глава 5Скачать
Геометрия 10 кл Понятие многогранникаСкачать