- Понятие криволинейного интеграла
- Криволинейные интегралы первого рода
- Криволинейные интегралы второго рода
- Вычисление криволинейных интегралов первого рода
- Кривая дана в декартовых прямоугольных координатах
- Кривая дана в параметрической форме
- Вычисление криволинейных интегралов второго рода
- Кривая дана в декартовых прямоугольных координатах
- Кривая дана в параметрической форме
- Больше примеров вычисления криволинейных интегралов
- Вычисление длины дуги кривой
- Вычисление площади участка плоскости
- Вычисление площади цилиндрической поверхности
- Вычисление массы материальной кривой
- Определение статических моментов материальной кривой
- Вычисление моментов инерции материальной кривой
- Вычисление координат центра тяжести материальной кривой
- Вычисление работы силы
- Вычислить криволинейный интеграл вдоль окружности пробегаемой в положительном направлении
- Контакты
- Примеры решений криволинейных интегралов
- Криволинейные интегралы 1-го рода: примеры решений
- Криволинейные интегралы 2-го рода: примеры решений
- Моменты инерции: примеры решений
- Другие задания: примеры решений
- 💥 Видео
Видео:Математический анализ, 47 урок, Криволинейные интегралы первого родаСкачать

Понятие криволинейного интеграла
Криволинейные интегралы — обобщение понятия определённого интеграла на случай, когда областью интегрирования является отрезок некоторой кривой, лежащий в плоскости. Общая запись криволинейного интеграла следующая:
где f(x, y) — функция двух переменных, а L — кривая, по отрезку AB которой происходит интегрирование. Если подынтегральная функция равна единице, то криволинейный интеграл равен длине дуги AB.
Как всегда в интегральном исчислении, криволинейный интеграл понимается как предел интегральных сумм каких-то очень маленьких частей чего-то очень большого. Что же суммируется в случае криволинейных интегралов?
Пусть на плоскости расположен отрезок AB некоторой кривой L, а функция двух переменных f(x, y) определена в точках кривой L. Пусть мы выполняем с этим отрезком кривой следующий алгоритм.
- Разделить кривую AB на части точками (рисунки ниже).
- В каждой части свободно выбрать точку M.
- Найти значение функции в выбранных точках.
- Значения функции умножить на
- длины частей в случае криволинейного интеграла первого рода;
- проекции частей на ось координат в случае криволинейного интеграла второго рода.
- Найти сумму всех произведений.
- Найти предел найденной интегральной суммы при условии, что длина самой длинной части кривой стремится к нулю.
Если упомянутый предел существует, то этот предел интегральной суммы и называется криволинейным интегралом от функции f(x, y) по кривой AB.
Случай криволинейного интеграла
первого рода
Случай криволинейного интеграла
второго рода
Введём следующие ообозначения.
M i (ζ i ; η i ) — выбранная на каждом участке точка с координатами.
f i (ζ i ; η i ) — значение функции f(x, y) в выбранной точке.
Δs i — длина части отрезка кривой (в случае криволинейного интеграла первого рода).
Δx i — проекция части отрезка кривой на ось Ox (в случае криволинейного интеграла второго рода).
d = maxΔs i — длина самой длинной части отрезка кривой.
Криволинейные интегралы первого рода
Исходя из вышеизложенного о пределе интегральных сумм, криволинейный интеграл первого рода записывается так:

Криволинейный интеграл первого рода обладает всеми свойствами, которыми обладает определённый интеграл. Однако есть одно важное различие. У определённого интеграла при перемене местами пределов интегрирования знак меняется на противоположный:

В случае же криволинейного интеграла первого рода не имеет значения, какую из точек кривой AB (A или B) считать началом отрезка, а какую концом, то есть

Криволинейные интегралы второго рода
Исходя из изложенного о пределе интегральных сумм, криволинейный интеграл второго рода записывается так:

В случае криволинейного интеграла второго рода при перемене местами начала и конца отрезка кривой знак интеграла меняется:

При составлении интегральной суммы криволинейного интеграла второго рода значения функции f i (ζ i ; η i ) можно умножать также на проекции частей отрезка кривой на ось Oy. Тогда получим интеграл

На практике обычно используется объединение криволинейных интегралов второго рода, то есть две функции f = P(x, y) и f = Q(x, y) и интегралы

а сумма этих интегралов
называется общим криволинейным интегралом второго рода.
Видео:Криволинейный интеграл II рода вдоль плоской кривойСкачать

Вычисление криволинейных интегралов первого рода
Вычисление криволинейных интегралов первого рода сводится к вычислению определённых интегралов. Рассмотрим два случая.
Кривая дана в декартовых прямоугольных координатах
Пусть на плоскости задана кривая y = y(x) и отрезку кривой AB соответствует изменение переменной x от a до b. Тогда в точках кривой подынтегральная функция f(x, y) = f(x, y(x)) («игрек» должен быть выражен через «икс»), а дифференциал дуги 

Если интеграл проще интегрировать по y, то из уравнения кривой нужно выразить x = x(y) («икс» через «игрек»), где 

Пример 1. Вычислить криволинейный интеграл

где AB — отрезок прямой между точками A(1; −1) и B(2; 1) .
Решение. Составим уравнение прямой AB , используя формулу 

Из уравнения прямой выразим y через x :

Тогда 
Кривая дана в параметрической форме
Пусть в пространстве задана кривая
Тогда в точках кривой функцию нужно выразить через параметр t (

Аналогично, если на плоскости задана кривая

то криволинейный интеграл вычисляется по формуле

Пример 2. Вычислить криволинейный интеграл

где L — часть линии окружности

находящаяся в первом октанте.
Решение. Данная кривая — четверть линии окружности, расположенная в плоскости z = 3 . Она соответствует значениям параметра 

то дифференциал дуги
Подынтегральную функцию выразим через параметр t :

Теперь, когда у нас всё выражено через параметр t , можем свести вычисление данного криволинейного интеграла к определённому интегралу:
Видео:Формула ГринаСкачать

Вычисление криволинейных интегралов второго рода
Так же, как и в случае криволинейных интегралов первого рода, вычисление интегралов второго рода сводится к вычислению определённых интегралов.
Кривая дана в декартовых прямоугольных координатах
Пусть дана кривая на плоскости уравнением функции «игрек», выраженной через «икс»: y = y(x) и дуге кривой AB соответствует изменение x от a до b . Тогда в подынтегральную функцию подставим выражение «игрека» через «икс» и определим дифференциал этого выражения «игрека» по «иксу»: 
Аналогично вычисляется криволинейный интеграл второго рода, когда кривая дана уравнением функции «икс», выраженной через «игрек»: x = x(y) , 
Пример 3. Вычислить криволинейный интеграл

а) Вычислим криволинейный интеграл по отрезку прямой (на рисунке — синяя). Напишем уравнение прямой и выразим «игрек» через «икс»:

Получаем dy = dx . Решаем данный криволинейный интеграл:
б) если L — дуга параболы y = x² , получим dy = 2xdx . Вычисляем интеграл:
В только что решённом примере получили в двух случаях один и тот же результат. И это не совпадение, а результат закономерности, так как данный интеграл удовлетворяет условиям следующей теоремы.
Теорема. Если функции P(x,y) , Q(x,y) и их частные производные 


Кривая дана в параметрической форме
Пусть в пространстве дана кривая


а в подынтегральные функции подставим

выражения этих функций через параметр t . Получаем формулу для вычисления криволинейного интеграла:
Пример 4. Вычислить криволинейный интеграл

отвечающая условию y ≥ 0 .
Решение. Данная кривая — часть эллипса, находящаяся в плоскости z = 2 . Она соответствует значению параметра 

можем представить криволинейный интеграл в виде определённого интеграла и вычислить его:
Если дан криволинейный интеграл и L — замкнутая линия, то такой интеграл называется интегралом по замкнутому контуру и его проще вычислить по формуле Грина.
Видео:Криволинейный интеграл по длине дуги ➜ Криволинейный интеграл 1-го родаСкачать

Больше примеров вычисления криволинейных интегралов
Пример 5. Вычислить криволинейный интеграл

где L — отрезок прямой 
Решение. Определим точки пересечения прямой с осями координат. Подставив в уравнение прямой y = 0 , получим 



Из уравнения прямой выразим y :



Теперь можем представить криволинейный интеграл в виде определённого интеграла и начать вычислять его:
В подынтегральном выражении выделяем множитель 
Пример 6. Вычислить криволинейный интеграл

где L — дуга параболы 
Решение. Так как 

Теперь можем представить криволинейный интеграл в виде определённого интеграла и вычислить его:
Пример 7. Вычислить криволинейный интеграл

где L — дуга астроиды
в первом квадранте.
Решение. В первом квадранте 
Представляем криволинейный интеграл в виде определённого интеграла и вычисляем его:
Пример 8. Вычислить криволинейный интеграл

где L — первая арка циклоиды
Решение. Циклоида образует первую арку при изменении параметра t от 0 до 2π . Определим дифференциал дуги:

Подставим в криволинейный интеграл dl и y , выраженные через параметр t и получаем:
Пример 9. Вычислить криволинейный интеграл

где L — отрезок прямой от точки A(1; 1) до точки B(3; 5) .
Решение. Составим уравнение прямой AB :

Из полученного уравнения прямой выразим «игрек»:
Поэтому 
Пример 10. Вычислить криволинейный интеграл

где L — первая арка циклоиды
Решение. Из уравнений кривой следует

Так как циклоида образует первую арку при изменении параметра t от 0 до 2π , то получаем соответствующие пределы интегрирования. Решаем данный криволинейный интеграл:

Уравнением кривой M 0 M 1 является y = 1 , тогда dy = 0 , на кривой M 1 M x — константа, значит, dx = 0 . Продолжаем и завершаем решение:
Вычисление длины дуги кривой
Если подынтегральная функция равна единице, то криволинейный интеграл первого рода равен длине дуги кривой L:

Пример 12. Вычислить длину дуги кривой

где 
Решение. Составляем криволинейный интеграл первого рода:

Определим производную «игрека»:

Продолжаем и завершаем решение:
Вычисление площади участка плоскости
Если границей участка D плоскости является кривая L, то площадь участка D можно вычислить в виде криволинейного интеграла второго рода

Пример 13. Вычислить площадь участка плоскости, ограниченного эллипсом

Решение. Площадь участка плоскости можно вычислить как криволинейный интеграл второго рода

где L — замкнутая линия, ограничивающая участок. Так как

Вычисление площади цилиндрической поверхности
Пусть на плоскости xOy дана гладка кривая L, в точках которой определена непрерывная функция двух переменных 


Вычисление массы материальной кривой
Если L — материальная кривая с плотностью 
Определение статических моментов материальной кривой
Статические моменты материальной кривой с плотностью 


Вычисление моментов инерции материальной кривой
Моменты инерции материальной кривой с плотностью 



Вычисление координат центра тяжести материальной кривой
Координаты центра тяжести 



Вычисление работы силы
Если под воздействием переменной силы 

Пример 14. В каждой точке плоскости действует сила 

Решение. Работу силы вычислим как криволинейный интеграл второго рода

Используя уравнение параболы, производим замену переменной
Видео:Криволинейный и двойной интеграл.Формула Грина. Ч2Скачать

Вычислить криволинейный интеграл вдоль окружности пробегаемой в положительном направлении
Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!
Контакты
![]() |



























































