- Вычисление площади поверхности
- Далее:
- Вычисление площади поверхности с помощью двойного интеграла
- Основные формулы
- Применение формул на практике
- Готовые работы на аналогичную тему
- Двойной интеграл площадь окружности
- Двойные интегралы в полярных координатах: теория и примеры
- Что значит вычислить двойной интеграл в полярных координатах?
- Пределы интегрирования в повторных интегралах
- Случай первый
- Случай второй
- Случай третий
- Случай четвёртый
- Решения двойных интегралов в полярных координатах: примеры
- Двойной интеграл с примерами решения и образцами выполнения
- Геометрический и физический смысл двойного интеграла
- Масса плоской пластинки
- Основные свойства двойного интеграла
- Вычисление двойного интеграла в декартовых координатах
- Вычисление двойного интеграла в полярных координатах
- Приложения двойного интеграла
- Объем тела
- Площадь плоской фигуры
- Масса плоской фигуры
- Статические моменты и координаты центра тяжести плоской фигуры
- Моменты инерции плоской фигуры
- Двойной интеграл
- Двойной интеграл площадь окружности
- 💡 Видео
Вычисление площади поверхности
- Услуги проектирования
- Двойной интеграл
- Вычисление площади поверхности
Видео:Площадь фигуры через двойной интеграл в полярных координатахСкачать
Вычисление площади поверхности
Пусть в пространстве задана кусочно-гладкая поверхность $sigma $, однозначно проектирующаяся в область $mathbf < textit > $ на плоскости $mathbf < textit > $. Пусть эта поверхность задаётся уравнением $sigma :;z=f(x,y),;(x,y)in D$. Тогда площадь этой поверхности выражается формулой
Мы докажем эту формулу позже, когда будем изучать поверхностные интегралы. Сейчас рассмотрим пример: найти площадь лепестков, вырезаемых цилиндром $mathbf < textit > ^ +mathbf < textit > ^ $ = 2$mathbf < textit > $ из сферы $mathbf < textit > ^ +mathbf < textit > ^ +mathbf < textit > ^ $ = 4$mathbf < textit > ^ $ .
Решение:
Область $mathbf < textit > $ — сдвинутый на $mathbf < textit > $ единиц по оси $mathbf < textit > $ круг, поэтому вычисляем в полярных координатах, учитывая симметрию поверхности относительно плоскостей $mathbf < textit > $ и $mathbf < textit > $:
Вычислить площадь cферы радиуса (a.)
Решение:
Рассмотрим верхнюю полусферу. Ее уравнение имеет вид $ < + + = > ;; < text ;;z = sqrt < — — > . > $
Очевидно, область интегрирования (R) представляет собой круг с таким же радиусом (a,) расположенный в центре координат. Площадь полусферы вычисляется по формуле $ < S_ < largefrac normalsize > > = iintlimits_R < sqrt < 1 + < < left( < frac < > < > >right) > ^2 > + < < left( < frac < > < > >right) > ^2 > > dxdy > .$
Площадь поверхности полной сферы, соответственно, равна $S = 2 < S_ < largefrac normalsize > > = 4pi .$
Далее:
Вычисление площадей плоских областей
Определение двойного интеграла
Специальные векторные поля
Поверхностный интеграл первого рода и его свойства
Вычисление объёмов
Определение криволинейного интеграла второго рода
Вычисление криволинейного интеграла второго рода. Примеры.
Поверхностный интеграл второго рода и его свойства
Критерий полноты . Лемма о нелинейной функции
Частные случаи векторных полей
Критерий полноты . Лемма о немонотонной функции
Вычисление двойного интеграла
Замена переменных в двойном интеграле. Двойной интеграл в полярных координатах
Примеры применения цилиндрических и сферических координат
Огравление $Rightarrow $
Видео:Вычисление двойного интегралаСкачать
Вычисление площади поверхности с помощью двойного интеграла
Вы будете перенаправлены на Автор24
Видео:Математика без ху!ни. Двойные интегралы. Часть1. Как вычислять.Скачать
Основные формулы
Если везде в области $D$ на координатной плоскости $xOy$ для формулы $I=iint limits _fleft(x,yright)cdot dxcdot dy $ положить $fleft(x,yright)equiv 1$, то, в соответствии со своим геометрическим смыслом, двойной интеграл будет численно равен площади $S$ области интегрирования $D$, то есть $S=iint limits _dxcdot dy $. В полярной системе координат эта же самая формула приобретает вид $S=iint limits _ <D^>rho cdot drho cdot dphi $.
Пусть некоторая поверхность $Q$ задана уравнениям $z=f_ left(x,yright)$. Вычислим площадь той части поверхности $Q$, которая проецируется на координатную плоскость $xOy$ в область $D_ $, где функция $f_ left(x,yright)$ непрерывна и имеет непрерывные частные производные. Тогда искомую площадь можно вычислить по формуле $S=iint limits _ <D_>sqrt<1+left(frac right)^ +left(frac right)^ > cdot dxcdot dy $.
Если уравнение поверхности $Q$ задано в виде $x=f_ left(y,zright)$ или $y=f_ left(x,zright)$, то соответствующие формулы для вычисления площади поверхности имеют следующий вид:
Здесь $D_ $ и $D_ $ — области, в которые проецируется поверхность $Q$ на координатные плоскости $yOz$ и $xOz$ соответственно.
Видео:Двойной интеграл. Площадь плоской фигуры.Скачать
Применение формул на практике
Находим координаты точки $Bleft(x_ ,y_ right)$:
$y_ =2cdot x_^ -16cdot x_ +31=2cdot 6^ -16cdot 6+31=7$. Получаем $Bleft(6,7right)$.
Готовые работы на аналогичную тему
На горизонтальной плоскости $xOy$ находится вертикальное цилиндрическое сооружение. Пол сооружения (область $D$) имеет вид прямоугольника с вершинами $Oleft(0,0right)$, $Mleft(5,0right)$, $Kleft(5,7right)$ и $Nleft(0,7right)$. Крыша сооружения имеет вид купола и описывается уравнением $z=sqrt <left(4cdot x+5right)^> +sqrt <left(2cdot y+6right)^> $. Требуется с помощью двойного интеграла вычислить площадь крыши этого сооружения.
Его прямоугольный пол является правильным в направлении оси $Oy$. Прямые $x=a$ и $x=b$ ограничивают пол в направлении оси $Ox$ сзади и спереди, следовательно, $a=0$, $b=5$. Линии $phi _ left(xright)$ и $phi _ left(xright)$ ограничивают пол в направлении оси $Oy$ слева и справа, следовательно, $phi _ left(xright)=0$, $phi _ left(xright)=7$. Окончательно $S=int limits _^dxcdot int limits _^sqrt<1+left(frac right)^ +left(frac right)^ > cdot dy $.
Таким образом, для нахождения площади нужно вычислить интеграл
[S=int limits _^dx int limits _^sqrt cdot dy =int limits _^dx int limits _^sqrt cdot dy .]
окончательно $S=frac cdot left(99845,86-75938,31right)approx 885,46$ кв.ед.
Видео:Двойной интеграл в полярных координатахСкачать
Двойной интеграл площадь окружности
Видео:Математический анализ, 41 урок, Вычисление двойных интеграловСкачать
Двойные интегралы в полярных координатах: теория и примеры
Видео:Найдем площадь и центр тяжести через двойной интегралСкачать
Что значит вычислить двойной интеграл в полярных координатах?
Если область интегрирования представляет собой окружность или часть окружности, двойной интеграл проще вычислить не в декартовых прямоугольных координатах, а в полярных координатах. В этом случае подынтегральная функция выражается как функция полярных переменных r и φ с использованием соотношений между полярными и декартовыми координатами x = rcosφ и y = rsinφ :
.
Что представляет собой элемент площади dxdy , выраженный в полярных координатах? Для ответ на этот вопрос разделим область интегрирования D на участки линиями окружности r = const и лучами φ = const . Рассмотрим один частичный участок (заштрихованный на рисунке), который ограничивают лучи, образующие с полярной осью углы φ и φ + dφ и линии окружности с радиусом r и r + dr . Этот криволинейный четырёхугольник можем приближенно считать прямоугольником с длиной боковой стороны dr и длиной основания rdφ . Поэтому элемент площади в полярных координатах выражается следующим образом:
а двойной интеграл в полярных координатах записывается так:
.
Чтобы вычислить двойной интеграл в полярных координатах, его нужно выразить через повторные интегралы, так же, как и «обычный» двойной интеграл в декартовых прямоугольных координатах. В полярных координатах внешний интеграл всегда интегрируется по углу φ , а внутренний — по радиусу r .
Вычислить двойной интеграл в полярных координатах — значит, как и в декартовых прямоугольных координатах, найти число, равное площади упомянутой фигуры D .
Видео:Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать
Пределы интегрирования в повторных интегралах
При переходе от двойного интеграла в полярных координатах к повторным интегралам расстановку пределов интегрирования могут облегчить следующие закономерности.
Случай первый
Полюс O является внутренней точкой области интегрирования D , область ограничена линией r = r(φ) .
Тогда соответственно нижний и верхний пределы интегрирования внешнего интеграла равны 0 и 2π , а внутреннего интеграла — 0 и r(φ) . Переход к повторным интегралам осуществляется следующим образом:
.
Случай второй
Полюс O находится на границе области интегрирования D , ограниченного линией r = r(φ) , но не является угловой точкой.
Через полюс O проведём касательную. Пусть касательная образует с полярной осью угол α . Тогда соответственно нижний и верхний пределы интегрирования внешнего интеграла равны α и π + α , а внутреннего интеграла — 0 и r(φ) . Переход к повторным интегралам осуществляется следующим образом:
.
Случай третий
Полюс O находится на границе области интегрирования D , ограниченного линией r = r(φ) , и является угловой точкой.
Из полюса O проведём лучи, которые будут ограничивать область D . Пусть эти лучи образуют с полярной осью углы α и β . Тогда соответственно нижний и верхний пределы интегрирования внешнего интеграла равны α и β , а внутреннего интеграла — 0 и r(φ) . Переход к повторным интегралам осуществляется следующим образом:
.
Случай четвёртый
Полюс O находится вне области интегрирования D .
Из полюса O проведём лучи, которые будут ограничивать область D . Пусть эти лучи образуют с полярной осью углы α и β , а область D ограничивают линии r = r 1 (φ) и r = r 2 (φ) . Тогда соответственно нижний и верхний пределы интегрирования внешнего интеграла равны α и β , а внутреннего интеграла — r 1 (φ) и r 2 (φ) . Переход к повторным интегралам осуществляется следующим образом:
.
Видео:Площадь круга через интегралСкачать
Решения двойных интегралов в полярных координатах: примеры
Пример 1. Вычислить в полярных координатах двойной интеграл
,
где область D ограничена линиями , , .
Решение. Строим на чертеже область интегрирования. Видим, что этот пример относится к третьему случаю из вышеописанных четырёх случаев расположения области интегрирования.
Выразим подынтегральную функцию как функцию полярных переменных:
.
Данные в условии линии, ограничивающие D , приводим к полярным координатам:
Переходим от двойного интеграла к повторному, учитывая пределы интегрирования, верные в третьем случае:
.
Вычисляем интеграл (так как повторные интегралы независимы друг от друга, каждый из них вычисляем отдельно и результаты перемножаем):
Пример 2. В повторном интеграле
перейти к полярной системе координат.
Решение. В повторном интеграле переменная x изменяется от -1 до 1, а переменная y — от параболы x² до 1. Таким образом, область интегрирования снизу ограничена параболой y = x² , а сверху — прямой y = 1 . Область интегирования изображена на следующем чертеже.
При переходе к полярным координатам область интегрирования нужно разделить на три части. Значит, данный повторный интеграл должен быть вычислен как сумма трёх интегралов. В первой области полярный радиус меняется от 0 до параболы, во второй области — от 0 до прямой y = 1 , в третьей области — от 0 до параболы. Точки пересечения прямой y = 1 и параболы: (1; 1) и (−1; 1) . В первой точке полярный угол составляет , во второй точке он составляет . Поэтому в первой области φ меняется от от 0 до , во второй области — от 0 до , в третьей области — от до π .
Запишем линии, ограничивающие область интегрирования в полярной системе координат. Найдём уравнение прямой y = 1 : или . Найдём уравнение параболы y = x² в полярной системе координат:
Теперь у нас есть всё, чтобы от данного повторного интеграла перейти к полярным координатам:
Пример 3. Вычислить в полярных координатах двойной интеграл
,
где область D ограничена линией окружности .
Решение. Строим на чертеже область интегрирования.
Область интегрирования ограничивает линия окружности с центром в точке (a; 0) и радиусом a . В этом легко убедиться, преобразовав её уравнение следующим образом:
.
Линия окружности касается оси Oy , поэтому полярный угол в области интегрирования меняется от до . Подставим и в уравнение окружности и получим
Напишем подынтегральную функцию в полярных координатах:
.
Теперь можем перейти в данном двойном интеграле к полярным координатам:
Наконец, находим двойной интеграл в полярных координатах:
В полученном выражении второе слагаемое равно нулю, так как и sinπ , и sin(−π) равны нулю. Продолжая, получаем:
Пример 4. Вычислить плоской фигуры, которую ограничивают линии , , , .
Решение. Построим заданную фигуру на следующем рисунке.
Так как фигура является частью круга, её площадь проще вычислить в полярных координатах. Данные уравнения линий перепишем в полярных координатах:
Таким образом, у нас есть всё, чтобы записать площадь фигуры в виде двойного интеграл в полярных координатах, перейти к повторному интегралу и вычислить его:
Пример 5. Вычислить в полярных координатах двойной интеграл
,
где область D ограничена линиями и .
Решение. Преобразуем данные уравнения линий, чтобы было проще построить чертёж:
.
Строим на чертеже область интегрирования.
В данных уравнениях линий перейдём к полярным координатам:
.
В данном двойном интеграле перейдём к полярным координатам, затем к повторным интегралам и вычислим интеграл:
Видео:Вычислить двойной интеграл, перейдя к полярным координатамСкачать
Двойной интеграл с примерами решения и образцами выполнения
Обобщением определенного интеграла на случай функций двух переменных является так называемый двойной интеграл.
Пусть в замкнутой области D плоскости Оху задана непрерывная функция z = f(x;y). Разобьем область D на п «элементарных областей» площади которых обозначим через а диаметры (наибольшее расстояние между точками области) — через (см. рис. 214).
В каждой области выберем произвольную точку умножим значение функции в этой точке на и составим сумму всех таких произведений:
Эта сумма называется интегральной суммой функции f(x; у) в области D.
Рассмотрим предел интегральной суммы (53.1), когда п стремится к бесконечности таким образом, что Если этот предел существует и не зависит ни от способа разбиения области D на части, ни от выбора точек в них, то он называется двойным интегралом от функции f(x;y) по области D и обозначается
Таким образом, двойной интеграл определяется равенством
В этом случае функция f(x;y) называется интегрируемой в области D; D — область интегрирования; х и у — переменные интегрирования; dx dy (или dS) — элемент площади.
Для всякой ли функции f(x; у) существует двойной интеграл? На этот вопрос отвечает следующая теорема, которую мы приведем здесь без доказательства.
Теорема:
Достаточное условие интегрируемости функции. Если функция z = f(x;y) непрерывна в замкнутой области D, то она интегрируема в этой области.
Замечания:
- Далее будем рассматривать только функции, непрерывные в области интегрирования, хотя двойной интеграл может существовать не только для непрерывных функций.
- Из определения двойного интеграла следует, что для интегрируемой в области D функции предел интегральных сумм существует и не зависит от способа разбиения области. Таким образом, мы можем разбивать область D на площадки прямыми, параллельными координатным осям (см. рис. 215). При этом равенство (53.2) можно записать в виде
Видео:Двойной интеграл в полярных координатах. Нахождение площади с помощью двойного интегралаСкачать
Геометрический и физический смысл двойного интеграла
Рассмотрим две задачи, приводящие к двойному интегралу. Объем цилиндрического тела
Рассмотрим тело, ограниченное сверху поверхностью, снизу — замкнутой областью D плоскости Оху, с боков — цилиндрической поверхностью, образующая которой параллельна оси Oz, а направляющей служит граница области D (см. рис. 216). Такое тело называется цилиндрическим. Найдем его объем V. Для этого разобьем область D (проекция поверхности z = f(x; у) на плоскость Оху) произвольным образом на п областей , площади которых равны A Рассмотрим цилиндрические столбики с основаниями ограниченные сверху кусками поверхности z = f(x;y) (на рис. 216 один из них выделен). В своей совокупности они составляют тело V. Обозначив объем столбика с основанием через , получим
Возьмем на каждой площадке Di произвольную точку и заменим каждый столбик прямым цилиндром с тем же основанием и высотой Объем этого цилиндра приближенно равен объему цилиндрического столбика, т. е. Тогда получаем:
Это равенство тем точнее, чем больше число п и чем меньше размеры «элементарных областей» ,. Естественно принять предел суммы (53.3) при условии, что число площадок неограниченно увеличивается а каждая площадка стягивается в точку за объем V цилиндрического тела, т. е.
или, согласно равенству (53.2),
Итак, величина двойного интеграла от неотрицательной функции равна объему цилиндрического тела. В этом состоит геометрический смысл двойного интеграла.
Масса плоской пластинки
Требуется найти массу m плоской пластинки D. зная, что ее поверхностная плотность есть непрерывная функция координат точки (х; у). Разобьем пластинку D на п элементарных частей площади которых обозначим через . В каждой области возьмем произвольную точку и вычислим плотность в ней:
Если области D, достаточно малы, то плотность в каждой точке мало отличается от значения Считая приближенно плотность в каждой точке области постоянной, равной , можно найти ее массу Так как масса m всей пластинки D равна Для ее вычисления имеем приближенное равенство
Точное значение массы получим как предел суммы (53.5) при условии
или, согласно равенству (53.2),
Итак, двойной интеграл от функции численно равен массе пластинки, если подынтегральную функцию считать плотностью этой пластинки в точке (х; у). В этом состоит физический смысл двойного интеграла.
Видео:Математика без ху!ни. Двойной интеграл, вычисление двумя способами.Скачать
Основные свойства двойного интеграла
Можно заметить, что процесс построения интеграла в области D дословно повторяет уже знакомую нам процедуру определения интеграла функции одной переменной на отрезке (см. § 35). Аналогичны и свойства этих интегралов и их доказательства (см. § 38). Поэтому перечислим основные свойства двойного интеграла, считая подынтегральные функции интегрируемыми.
3.Если область D разбить линией на две области такие, что а пересечение состоит лишь из линии, их разделяющей (см. рис. 217), то
4.Если в области D имеет место неравенство то и Если в области D функции f(x;y) и удовлетворяют неравенству то и
6.Если функция f(x;y) непрерывна в замкнутой области D, площадь которой — соответственно наименьшее и наибольшее значения подынтегральной функции в области D.
7.Если функция f(x;y) непрерывна в замкнутой области D, площадь которой S, то в этой области существует такая точка, что Величину
называют средним значением функции f(x; у) в области D.
Видео:Математический анализ, 43 урок, Приложения двойных интеграловСкачать
Вычисление двойного интеграла в декартовых координатах
Покажем, что вычисление двойного интеграла сводится к последовательному вычислению двух определенных интегралов.
Пусть требуется вычислить двойной интеграл где функция непрерывна в области D. Тогда, как это было показано в п. 53.2, двойной интеграл выражает объем цилиндрического тела, ограниченного сверху поверхностью z = f(x;y). Найдем этот объем, используя метод параллельных сечений. Ранее (см. (41.6)) было показано, что
где S(x) — площадь сечения плоскостью, перпендикулярной оси Ох, а х = а, х = b — уравнения плоскостей, ограничивающих данное тело.
Положим сначала, что область D представляет собой криволинейную трапецию, ограниченную прямыми x = a и x = b и кривыми, причем функции непрерывны и таковы, что для всех (см. рис. 218). Такая область называется правильной в направлении оси Оу: любая прямая, параллельная оси Оу, пересекает границу области не более чем в двух точках.
Построим сечение цилиндрического тела плоскостью, перпендикулярной оси
В сечении получим криволинейную трапецию ABCD, ограниченную линиями
Площадь S(x) этой трапеции находим с помощью определенного интеграла
Теперь, согласно методу параллельных сечений, искомый объем цилиндрического тела может быть найден так:
С другой стороны, в п. 53.2 было доказано, что объем цилиндрического тела определяется как двойной интеграл от функции по области D. Следовательно,
Это равенство обычно записывается в виде
Формула (53.7) представляет собой способ вычисления двойного интеграла в декартовых координатах. Правую часть формулы (53.7) называют двукратным (или повторным) интегралом от функции f(x;y) по области D. При этом называется внутренним интегралом.
Для вычисления двукратного интеграла сначала берем внутренний интеграл, считая х постоянным, затем берем внешний интеграл, т. е. результат первого интегрирования интегрируем по х в пределах от а до b.
Если же область D ограничена прямыми кривыми
для всех т. е. область D — правильная в направлении оси Ох, то, рассекая тело плоскостью у = const, аналогично получим:
Здесь, при вычислении внутреннего интеграла, считаем у постоянным.
Замечания:
- Формулы (53.7) и (53.8) справедливы и в случае, когда
- Если область D правильная в обоих направлениях, то двойной интеграл можно вычислять как по формуле (53.7), так и по формуле (53.8).
- Если область D не является правильной ни «по x», ни «по у», то для сведения двойного интеграла к повторным ее следует разбить на части, правильные в направлении осиОх или оси Оу.
- Полезно помнить, что внешние пределы в двукратном интеграле всегда постоянны, а внутренние, как правило, переменные.
Пример:
Вычислить где область D ограничена линиями у
Решение:
На рисунке 220 изображена область интегрирования D. Она правильная в направлении оси Ох. Для вычисления данного двойного интеграла воспользуемся формулой (53.8):
Отметим, что для вычисления данного двойного интеграла можно воспользоваться формулой (53.7). Но для этого область D следует разбить на две области: . Получаем:
Ответ, разумеется, один и тот же.
Видео:Математика без ху!ни. Двойные интегралы. Часть2.Скачать
Вычисление двойного интеграла в полярных координатах
Для упрощения вычисления двойного интеграла часто применяют метод подстановки (как это делалось и при вычислении определенного интеграла), т. е. вводят новые переменные под знаком двойного интеграла.
Определим преобразование независимых переменных х и у (замену переменных) как
Если функции (53.9) имеют в некоторой области D* плоскости Ouv непрерывные частные производные первого порядка и отличный от нуля определитель
а функция f(х; у) непрерывна в области D, то справедлива формула замены переменных в двойном интеграле:
Функциональный определитель (53.10) называется определителем Якоби или якобианом (Г. Якоби — немецкий математик). Доказательство формулы (53.11) не приводим.
Рассмотрим частный случай замены переменных, часто используемый при вычислении двойного интеграла, а именно замену декартовых координат х и у полярными координатами
В качестве инь возьмем полярные координаты Они связаны с декартовыми координатами формулами (см. п. 9.1).
Правые части в этих равенствах — непрерывно дифференцируемые функции. Якобиан преобразования определяется из (53.10) как
Формула замены переменных (53.11) принимает вид:
где D* — область в полярной системе координат, соответствующая области D в декартовой системе координат.
Для вычисления двойного интеграла в полярных координатах применяют то же правило сведения его к двукратному интегралу. Так, если
область D* имеет вид, изображенный на рисунке 221 (ограничена лучами и кривыми где т. е. область D* правильная: луч, выходящий из полюса, пересекает ее границу не более чем в двух точках), то правую часть формулы (53.12) можно записать в виде
Внутренний интеграл берется при постоянном
Замечания:
- Переход к полярным координатам полезен, когда подынтегральная функция имеет вид область Dесть круг, кольцо или часть таковых.
- На практике переход к полярным координатам осуществляется путем замены уравнения линий, ограничивающих область D, также преобразуются к полярным координатам. Преобразование области D в область D* не выполняют, а, совместив декартову и полярную системы координат, находят нужные пределы интегрирования по (исследуя закон изменения точки при ее отождествлении с точкой (х; у) области D).
Пример:
Вычислить где область D — круг
Решение: Применив формулу (53.12), перейдем к полярным координатам:
Область D в полярной системе координат определяется неравенствами (см. рис. 222) Заметим: область D —круг — преобразуется в область D* — прямоугольник. Поэтому, согласно формуле (53.13), имеем:
Видео:Двойной интеграл / Как находить двойной интеграл через повторный (двукратный) / Два способаСкачать
Приложения двойного интеграла
Приведем некоторые примеры применения двойного интеграла.
Объем тела
Как уже показано (п. 53.2), объем цилиндрического тела находится по формуле
где z = f(x;y) — уравнение поверхности, ограничивающей тело сверху.
Площадь плоской фигуры
Если положить в формуле (53.4) f(x;y) = 1, то цилиндрическое тело «превратится» в прямой цилиндр с высотой Н = 1. Объем такого цилиндра, как известно, численно равен площади S основания D. Получаем формулу для вычисления площади S области D:
или, в полярных координатах,
Масса плоской фигуры
Как уже показано (п. 53.2), масса плоской пластинки D с переменной плотностью находится по формуле
Статические моменты и координаты центра тяжести плоской фигуры
Статические моменты фигуры D относительно осей Ох и Оу (см. п. 41.6) могут быть вычислены по формулам
а координаты центра масс фигуры по формулам
Моменты инерции плоской фигуры
Моментом инерции материальной точки массы m относительно оси l называется произведение массы m на квадрат расстояния d точки до оси, т. е. Моменты инерции плоской фигуры относительно осей Ох и Оу могут быть вычислены по формулам:
Момент инерции фигуры относительно начала координат — по формуле
Замечание:
Приведенными примерами не исчерпывается применение двойного интеграла. Далее мы встретим приложение двойного интеграла к вычислению площадей поверхностей фигур (п. 57.3).
Пример:
Найти объем тела, ограниченного поверхностями
Решение: Данное тело ограничено двумя параболоидами (см. рис. 223). Решая систему
находим уравнение линии их пересечения:
Искомый объем равен разности объемов двух цилиндрических тел с одним основанием (круг ) и ограниченных сверху соответственно поверхностями Используя формулу (53.4), имеем
Переходя к полярным координатам, находим:
Пример:
Найти массу, статические моменты и координаты центра тяжести фигуры, лежащей в первой четверти, ограниченной эллипсом и координатными осями (см. рис. 224). Поверхностная плотность в каждой точке фигуры пропорциональна произведению координат точки.
Решение: По формуле (53.6) находим массу пластинки. По условию, — коэффициент пропорциональности.
Находим статические моменты пластинки:
Находим координаты центра тяжести пластинки, используя формулы
Видео:Пересечение двух цилиндров: объем и площадь поверхности через двойной интегралСкачать
Двойной интеграл
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Видео:Вычисление двойного интеграла в декартовой системе координат.Скачать
Двойной интеграл площадь окружности
Если (fleft( right) = 1) в интеграле (iintlimits_R right)dxdy>,) то двойной интеграл равен площади области интегрирования (R.)
Площадь области типа (I) (элементарной относительно оси (Oy)) (рисунок (1)) выражается через повторный интеграл в виде [A = intlimits_a^b ^ > .] Аналогично, площадь области типа (II) (элементарной относительно оси (Ox)) (рисунок (2)) описывается формулой [A = intlimits_c^d > .]
Предположим, что поверхность задана функцией (z = gleft( right),) имеющей область определения (R.) Тогда площадь такой поверхности над областью (R) определяется формулой [S = iintlimits_R > >> right)>^2> + > >> right)>^2>> dxdy> ] при условии, что частные производные ( > >normalsize>) и ( > >normalsize>) непрерывны всюду в области (R.)
💡 Видео
Вычисление двойного интеграла | Лекция 4.1 | ИнтФНПСкачать
Вычисление двойного интеграла в полярной системе координат.Скачать