- Вычисление площади поверхности
- Далее:
- Вычисление площади поверхности с помощью двойного интеграла
- Основные формулы
- Применение формул на практике
- Готовые работы на аналогичную тему
- Двойной интеграл площадь окружности
- Двойные интегралы в полярных координатах: теория и примеры
- Что значит вычислить двойной интеграл в полярных координатах?
- Пределы интегрирования в повторных интегралах
- Случай первый
- Случай второй
- Случай третий
- Случай четвёртый
- Решения двойных интегралов в полярных координатах: примеры
- Двойной интеграл с примерами решения и образцами выполнения
- Геометрический и физический смысл двойного интеграла
- Масса плоской пластинки
- Основные свойства двойного интеграла
- Вычисление двойного интеграла в декартовых координатах
- Вычисление двойного интеграла в полярных координатах
- Приложения двойного интеграла
- Объем тела
- Площадь плоской фигуры
- Масса плоской фигуры
- Статические моменты и координаты центра тяжести плоской фигуры
- Моменты инерции плоской фигуры
- Двойной интеграл
- Двойной интеграл площадь окружности
- 💡 Видео
Вычисление площади поверхности
- Услуги проектирования
- Двойной интеграл
- Вычисление площади поверхности
Видео:Площадь фигуры через двойной интеграл в полярных координатахСкачать

Вычисление площади поверхности
Пусть в пространстве задана кусочно-гладкая поверхность $sigma $, однозначно проектирующаяся в область $mathbf < textit > $ на плоскости $mathbf < textit > $. Пусть эта поверхность задаётся уравнением $sigma :;z=f(x,y),;(x,y)in D$. Тогда площадь этой поверхности выражается формулой
Мы докажем эту формулу позже, когда будем изучать поверхностные интегралы. Сейчас рассмотрим пример: найти площадь лепестков, вырезаемых цилиндром $mathbf < textit > ^ +mathbf < textit > ^ $ = 2$mathbf < textit > $ из сферы $mathbf < textit > ^ +mathbf < textit > ^ +mathbf < textit > ^ $ = 4$mathbf < textit > ^ $ .
Решение:
Область $mathbf < textit > $ — сдвинутый на $mathbf < textit > $ единиц по оси $mathbf < textit > $ круг, поэтому вычисляем в полярных координатах, учитывая симметрию поверхности относительно плоскостей $mathbf < textit > $ и $mathbf < textit > $:
Вычислить площадь cферы радиуса (a.)
Решение:
Рассмотрим верхнюю полусферу. Ее уравнение имеет вид $ < + + = > ;; < text ;;z = sqrt < — — > . > $
Очевидно, область интегрирования (R) представляет собой круг с таким же радиусом (a,) расположенный в центре координат. Площадь полусферы вычисляется по формуле $ < S_ < largefrac normalsize > > = iintlimits_R < sqrt < 1 + < < left( < frac < > < > >right) > ^2 > + < < left( < frac < > < > >right) > ^2 > > dxdy > .$
Площадь поверхности полной сферы, соответственно, равна $S = 2 < S_ < largefrac normalsize > > = 4pi .$
Далее:
Вычисление площадей плоских областей
Определение двойного интеграла
Специальные векторные поля
Поверхностный интеграл первого рода и его свойства
Вычисление объёмов
Определение криволинейного интеграла второго рода
Вычисление криволинейного интеграла второго рода. Примеры.
Поверхностный интеграл второго рода и его свойства
Критерий полноты . Лемма о нелинейной функции
Частные случаи векторных полей
Критерий полноты . Лемма о немонотонной функции
Вычисление двойного интеграла
Замена переменных в двойном интеграле. Двойной интеграл в полярных координатах
Примеры применения цилиндрических и сферических координат
Огравление $Rightarrow $
Видео:Вычисление двойного интегралаСкачать

Вычисление площади поверхности с помощью двойного интеграла
Вы будете перенаправлены на Автор24
Видео:Математика без ху!ни. Двойные интегралы. Часть1. Как вычислять.Скачать

Основные формулы
Если везде в области $D$ на координатной плоскости $xOy$ для формулы $I=iint limits _fleft(x,yright)cdot dxcdot dy $ положить $fleft(x,yright)equiv 1$, то, в соответствии со своим геометрическим смыслом, двойной интеграл будет численно равен площади $S$ области интегрирования $D$, то есть $S=iint limits _dxcdot dy $. В полярной системе координат эта же самая формула приобретает вид $S=iint limits _ <D^>rho cdot drho cdot dphi $.
Пусть некоторая поверхность $Q$ задана уравнениям $z=f_ left(x,yright)$. Вычислим площадь той части поверхности $Q$, которая проецируется на координатную плоскость $xOy$ в область $D_ $, где функция $f_ left(x,yright)$ непрерывна и имеет непрерывные частные производные. Тогда искомую площадь можно вычислить по формуле $S=iint limits _ <D_>sqrt<1+left(frac right)^ +left(frac right)^ > cdot dxcdot dy $.
Если уравнение поверхности $Q$ задано в виде $x=f_ left(y,zright)$ или $y=f_ left(x,zright)$, то соответствующие формулы для вычисления площади поверхности имеют следующий вид:
Здесь $D_ $ и $D_ $ — области, в которые проецируется поверхность $Q$ на координатные плоскости $yOz$ и $xOz$ соответственно.
Видео:Двойной интеграл. Площадь плоской фигуры.Скачать

Применение формул на практике
Находим координаты точки $Bleft(x_ ,y_ right)$:
$y_ =2cdot x_^ -16cdot x_ +31=2cdot 6^ -16cdot 6+31=7$. Получаем $Bleft(6,7right)$.
Готовые работы на аналогичную тему
На горизонтальной плоскости $xOy$ находится вертикальное цилиндрическое сооружение. Пол сооружения (область $D$) имеет вид прямоугольника с вершинами $Oleft(0,0right)$, $Mleft(5,0right)$, $Kleft(5,7right)$ и $Nleft(0,7right)$. Крыша сооружения имеет вид купола и описывается уравнением $z=sqrt <left(4cdot x+5right)^> +sqrt <left(2cdot y+6right)^> $. Требуется с помощью двойного интеграла вычислить площадь крыши этого сооружения.
Его прямоугольный пол является правильным в направлении оси $Oy$. Прямые $x=a$ и $x=b$ ограничивают пол в направлении оси $Ox$ сзади и спереди, следовательно, $a=0$, $b=5$. Линии $phi _ left(xright)$ и $phi _ left(xright)$ ограничивают пол в направлении оси $Oy$ слева и справа, следовательно, $phi _ left(xright)=0$, $phi _ left(xright)=7$. Окончательно $S=int limits _^dxcdot int limits _^sqrt<1+left(frac right)^ +left(frac right)^ > cdot dy $.
Таким образом, для нахождения площади нужно вычислить интеграл
[S=int limits _^dx int limits _^sqrt cdot dy =int limits _^dx int limits _^sqrt cdot dy .]
окончательно $S=frac cdot left(99845,86-75938,31right)approx 885,46$ кв.ед.
Видео:Двойной интеграл в полярных координатахСкачать

Двойной интеграл площадь окружности
Видео:Математический анализ, 41 урок, Вычисление двойных интеграловСкачать

Двойные интегралы в полярных координатах: теория и примеры
Видео:Найдем площадь и центр тяжести через двойной интегралСкачать

Что значит вычислить двойной интеграл в полярных координатах?
Если область интегрирования представляет собой окружность или часть окружности, двойной интеграл проще вычислить не в декартовых прямоугольных координатах, а в полярных координатах. В этом случае подынтегральная функция выражается как функция полярных переменных r и φ с использованием соотношений между полярными и декартовыми координатами x = rcosφ и y = rsinφ :

Что представляет собой элемент площади dxdy , выраженный в полярных координатах? Для ответ на этот вопрос разделим область интегрирования D на участки линиями окружности r = const и лучами φ = const . Рассмотрим один частичный участок (заштрихованный на рисунке), который ограничивают лучи, образующие с полярной осью углы φ и φ + dφ и линии окружности с радиусом r и r + dr . Этот криволинейный четырёхугольник можем приближенно считать прямоугольником с длиной боковой стороны dr и длиной основания rdφ . Поэтому элемент площади в полярных координатах выражается следующим образом:
а двойной интеграл в полярных координатах записывается так:

Чтобы вычислить двойной интеграл в полярных координатах, его нужно выразить через повторные интегралы, так же, как и «обычный» двойной интеграл в декартовых прямоугольных координатах. В полярных координатах внешний интеграл всегда интегрируется по углу φ , а внутренний — по радиусу r .
Вычислить двойной интеграл в полярных координатах — значит, как и в декартовых прямоугольных координатах, найти число, равное площади упомянутой фигуры D .
Видео:Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать

Пределы интегрирования в повторных интегралах
При переходе от двойного интеграла в полярных координатах к повторным интегралам расстановку пределов интегрирования могут облегчить следующие закономерности.
Случай первый
Полюс O является внутренней точкой области интегрирования D , область ограничена линией r = r(φ) .
Тогда соответственно нижний и верхний пределы интегрирования внешнего интеграла равны 0 и 2π , а внутреннего интеграла — 0 и r(φ) . Переход к повторным интегралам осуществляется следующим образом:

Случай второй
Полюс O находится на границе области интегрирования D , ограниченного линией r = r(φ) , но не является угловой точкой.
Через полюс O проведём касательную. Пусть касательная образует с полярной осью угол α . Тогда соответственно нижний и верхний пределы интегрирования внешнего интеграла равны α и π + α , а внутреннего интеграла — 0 и r(φ) . Переход к повторным интегралам осуществляется следующим образом:

Случай третий
Полюс O находится на границе области интегрирования D , ограниченного линией r = r(φ) , и является угловой точкой.
Из полюса O проведём лучи, которые будут ограничивать область D . Пусть эти лучи образуют с полярной осью углы α и β . Тогда соответственно нижний и верхний пределы интегрирования внешнего интеграла равны α и β , а внутреннего интеграла — 0 и r(φ) . Переход к повторным интегралам осуществляется следующим образом:

Случай четвёртый
Полюс O находится вне области интегрирования D .
Из полюса O проведём лучи, которые будут ограничивать область D . Пусть эти лучи образуют с полярной осью углы α и β , а область D ограничивают линии r = r 1 (φ) и r = r 2 (φ) . Тогда соответственно нижний и верхний пределы интегрирования внешнего интеграла равны α и β , а внутреннего интеграла — r 1 (φ) и r 2 (φ) . Переход к повторным интегралам осуществляется следующим образом:

Видео:Площадь круга через интегралСкачать

Решения двойных интегралов в полярных координатах: примеры
Пример 1. Вычислить в полярных координатах двойной интеграл

где область D ограничена линиями 


Решение. Строим на чертеже область интегрирования. Видим, что этот пример относится к третьему случаю из вышеописанных четырёх случаев расположения области интегрирования.
Выразим подынтегральную функцию как функцию полярных переменных:

Данные в условии линии, ограничивающие D , приводим к полярным координатам:
Переходим от двойного интеграла к повторному, учитывая пределы интегрирования, верные в третьем случае:

Вычисляем интеграл (так как повторные интегралы независимы друг от друга, каждый из них вычисляем отдельно и результаты перемножаем):
Пример 2. В повторном интеграле
перейти к полярной системе координат.
Решение. В повторном интеграле переменная x изменяется от -1 до 1, а переменная y — от параболы x² до 1. Таким образом, область интегрирования снизу ограничена параболой y = x² , а сверху — прямой y = 1 . Область интегирования изображена на следующем чертеже.
При переходе к полярным координатам область интегрирования нужно разделить на три части. Значит, данный повторный интеграл должен быть вычислен как сумма трёх интегралов. В первой области полярный радиус меняется от 0 до параболы, во второй области — от 0 до прямой y = 1 , в третьей области — от 0 до параболы. Точки пересечения прямой y = 1 и параболы: (1; 1) и (−1; 1) . В первой точке полярный угол составляет 




Запишем линии, ограничивающие область интегрирования в полярной системе координат. Найдём уравнение прямой y = 1 : 

Теперь у нас есть всё, чтобы от данного повторного интеграла перейти к полярным координатам:
Пример 3. Вычислить в полярных координатах двойной интеграл

где область D ограничена линией окружности 
Решение. Строим на чертеже область интегрирования.
Область интегрирования ограничивает линия окружности с центром в точке (a; 0) и радиусом a . В этом легко убедиться, преобразовав её уравнение следующим образом:

Линия окружности 




Напишем подынтегральную функцию в полярных координатах:

Теперь можем перейти в данном двойном интеграле к полярным координатам:
Наконец, находим двойной интеграл в полярных координатах:
В полученном выражении второе слагаемое равно нулю, так как и sinπ , и sin(−π) равны нулю. Продолжая, получаем:
Пример 4. Вычислить плоской фигуры, которую ограничивают линии 



Решение. Построим заданную фигуру на следующем рисунке.
Так как фигура является частью круга, её площадь проще вычислить в полярных координатах. Данные уравнения линий перепишем в полярных координатах:
Таким образом, у нас есть всё, чтобы записать площадь фигуры в виде двойного интеграл в полярных координатах, перейти к повторному интегралу и вычислить его:
Пример 5. Вычислить в полярных координатах двойной интеграл

где область D ограничена линиями 

Решение. Преобразуем данные уравнения линий, чтобы было проще построить чертёж:

Строим на чертеже область интегрирования.
В данных уравнениях линий перейдём к полярным координатам:

В данном двойном интеграле перейдём к полярным координатам, затем к повторным интегралам и вычислим интеграл:
Видео:Вычислить двойной интеграл, перейдя к полярным координатамСкачать

Двойной интеграл с примерами решения и образцами выполнения
Обобщением определенного интеграла на случай функций двух переменных является так называемый двойной интеграл.
Пусть в замкнутой облас



В каждой области 



Эта сумма называется интегральной суммой функции f(x; у) в области D.
Рассмотрим предел интегральной суммы (53.1), когда п стремится к бесконечности таким образом, что 
Таким образом, двойной интеграл определяется равенством
В этом случае функция f(x;y) называется интегрируемой в области D; D — область интегрирования; х и у — переменные интегрирования; dx dy (или dS) — элемент площади.
Для всякой ли функции f(x; у) существует двойной интеграл? На этот вопрос отвечает следующая теорема, которую мы приведем здесь без доказательства.
Теорема:
Достаточное условие интегрируемости функции. Если функция z = f(x;y) непрерывна в замкнутой области D, то она интегрируема в этой области.
Замечания:
- Далее будем рассматривать только функции, непрерывные в области интегрирования, хотя двойной интеграл может существовать не только для непрерывных функций.
- Из определения двойного интеграла следует, что для интегрируемой в области D функции предел интегральных сумм существует и не зависит от способа разбиения области. Таким образом, мы можем разбивать область D на площадки прямыми, параллельными координатным осям (см. рис. 215). При этом равенство (53.2) можно записать в виде 
Видео:Двойной интеграл в полярных координатах. Нахождение площади с помощью двойного интегралаСкачать

Геометрический и физический смысл двойного интеграла
Рассмотрим две задачи, приводящие к двойному интегралу. Объем цилиндрического тела
Рассмотрим тело, ограниченное сверху поверхностью




 
Возьмем на каждой площадке Di произвольную точку 




Это равенство тем точнее, чем больше число п и чем меньше размеры «элементарных областей» 



или, согласно равенству (53.2),
Итак, величина двойного интеграла от неотрицательной функции равна объему цилиндрического тела. В этом состоит геометрический смысл двойного интеграла.
Масса плоской пластинки
Требуется найти массу m плоской пластинки D. зная, что ее поверхностная плотность 




Если области D, достаточно малы, то плотность в каждой точке 





Точное значение массы получим как предел суммы (53.5) при условии 
или, согласно равенству (53.2),
Итак, двойной интеграл от функции 

Видео:Математика без ху!ни. Двойной интеграл, вычисление двумя способами.Скачать

Основные свойства двойного интеграла
Можно заметить, что процесс построения интеграла в области D дословно повторяет уже знакомую нам процедуру определения интеграла функции одной переменной на отрезке (см. § 35). Аналогичны и свойства этих интегралов и их доказательства (см. § 38). Поэтому перечислим основные свойства двойного интеграла, считая подынтегральные функции интегрируемыми.
3.Если область D разбить линией на две области 


 
4.Если в области D имеет место неравенство 



6.Если функция f(x;y) непрерывна в замкнутой области D, площадь которой 
7.Если функция f(x;y) непрерывна в замкнутой области D, площадь которой S, то в этой области существует такая точка

называют средним значением функции f(x; у) в области D.
Видео:Математический анализ, 43 урок, Приложения двойных интеграловСкачать

Вычисление двойного интеграла в декартовых координатах
Покажем, что вычисление двойного интеграла сводится к последовательному вычислению двух определенных интегралов.
Пусть требуется вычислить двойной интеграл 

 
где S(x) — площадь сечения плоскостью, перпендикулярной оси Ох, а х = а, х = b — уравнения плоскостей, ограничивающих данное тело.
Положим сначала, что область D представляет собой криволинейную трапецию, ограниченную прямыми x = a и x = b и кривыми



Построим сечение цилиндрического тела плоскостью, перпендикулярной оси 
В сечении получим криволинейную трапецию ABCD, ограниченную линиями
Площадь S(x) этой трапеции находим с помощью определенного интеграла
Теперь, согласно методу параллельных сечений, искомый объем цилиндрического тела может быть найден так:
С другой стороны, в п. 53.2 было доказано, что объем цилиндрического тела определяется как двойной интеграл от функции 
Это равенство обычно записывается в виде
Формула (53.7) представляет собой способ вычисления двойного интеграла в декартовых координатах. Правую часть формулы (53.7) называют двукратным (или повторным) интегралом от функции f(x;y) по области D. При этом 
Для вычисления двукратного интеграла сначала берем внутренний интеграл, считая х постоянным, затем берем внешний интеграл, т. е. результат первого интегрирования интегрируем по х в пределах от а до b.
Если же область D ограничена прямыми 
для всех 
Здесь, при вычислении внутреннего интеграла, считаем у постоянным.
Замечания:
- Формулы (53.7) и (53.8) справедливы и в случае, когда
- Если область D правильная в обоих направлениях, то двойной интеграл можно вычислять как по формуле (53.7), так и по формуле (53.8).
- Если область D не является правильной ни «по x», ни «по у», то для сведения двойного интеграла к повторным ее следует разбить на части, правильные в направлении осиОх или оси Оу.
- Полезно помнить, что внешние пределы в двукратном интеграле всегда постоянны, а внутренние, как правило, переменные.
Пример:
Вычислить 
Решение:
На рисунке 220 изображена область интегрирования D. Она правильная в направлении оси Ох. Для вычисления данного двойного интеграла воспользуемся формулой (53.8):
 
Отметим, что для вычисления данного двойного интеграла можно воспользоваться формулой (53.7). Но для этого область D следует разбить на две области: 
 
Ответ, разумеется, один и тот же.
Видео:Математика без ху!ни. Двойные интегралы. Часть2.Скачать

Вычисление двойного интеграла в полярных координатах
Для упрощения вычисления двойного интеграла часто применяют метод подстановки (как это делалось и при вычислении определенного интеграла), т. е. вводят новые переменные под знаком двойного интеграла.
Определим преобразование независимых переменных х и у (замену переменных) как
Если функции (53.9) имеют в некоторой области D* плоскости Ouv непрерывные частные производные первого порядка и отличный от нуля определитель
а функция f(х; у) непрерывна в области D, то справедлива формула замены переменных в двойном интеграле:
Функциональный определитель (53.10) называется определителем Якоби или якобианом (Г. Якоби — немецкий математик). Доказательство формулы (53.11) не приводим.
Рассмотрим частный случай замены переменных, часто используемый при вычислении двойного интеграла, а именно замену декартовых координат х и у полярными координатами 
В качестве инь возьмем полярные координаты 

Правые части в этих равенствах — непрерывно дифференцируемые функции. Якобиан преобразования определяется из (53.10) как
Формула замены переменных (53.11) принимает вид:
где D* — область в полярной системе координат, соответствующая области D в декартовой системе координат.
Для вычисления двойного интеграла в полярных координатах применяют то же правило сведения его к двукратному интегралу. Так, если
область D* имеет вид, изображенный на рисунке 221 (ограничена лучами 


Внутренний интеграл берется при постоянном 
Замечания:
- Переход к полярным координатам полезен, когда подынтегральная функция имеет вид область Dесть круг, кольцо или часть таковых. 
- На практике переход к полярным координатам осуществляется путем замены уравнения линий, ограничивающих область D, также преобразуются к полярным координатам. Преобразование области D в область D* не выполняют, а, совместив декартову и полярную системы координат, находят нужные пределы интегрирования по (исследуя закон изменения точки при ее отождествлении с точкой (х; у) области D). 
Пример:
Вычислить 
Решение: Применив формулу (53.12), перейдем к полярным координатам:
Область D в полярной системе координат определяется неравенствами (см. рис. 222) 
Видео:Двойной интеграл / Как находить двойной интеграл через повторный (двукратный) / Два способаСкачать

Приложения двойного интеграла
Приведем некоторые примеры применения двойного интеграла.
Объем тела
Как уже показано (п. 53.2), объем цилиндрического тела находится по формуле
где z = f(x;y) — уравнение поверхности, ограничивающей тело сверху.
Площадь плоской фигуры
Если положить в формуле (53.4) f(x;y) = 1, то цилиндрическое тело «превратится» в прямой цилиндр с высотой Н = 1. Объем такого цилиндра, как известно, численно равен площади S основания D. Получаем формулу для вычисления площади S области D:
или, в полярных координатах,
Масса плоской фигуры
Как уже показано (п. 53.2), масса плоской пластинки D с переменной плотностью 
Статические моменты и координаты центра тяжести плоской фигуры
Статические моменты фигуры D относительно осей Ох и Оу (см. п. 41.6) могут быть вычислены по формулам
а координаты центра масс фигуры по формулам
Моменты инерции плоской фигуры
Моментом инерции материальной точки массы m относительно оси l называется произведение массы m на квадрат расстояния d точки до оси, т. е. 
Момент инерции фигуры относительно начала координат — по формуле 
Замечание:
Приведенными примерами не исчерпывается применение двойного интеграла. Далее мы встретим приложение двойного интеграла к вычислению площадей поверхностей фигур (п. 57.3).
Пример:
Найти объем тела, ограниченного поверхностями
Решение: Данное тело ограничено двумя параболоидами (см. рис. 223). Решая систему
 
находим уравнение линии их пересечения:
Искомый объем равен разности объемов двух цилиндрических тел с одним основанием (круг 

Переходя к полярным координатам, находим:
Пример:
Найти массу, статические моменты 

Решение: По формуле (53.6) находим массу пластинки. По условию, 
Находим статические моменты пластинки:
Находим координаты центра тяжести пластинки, используя формулы
Видео:Пересечение двух цилиндров: объем и площадь поверхности через двойной интегралСкачать

Двойной интеграл
 

















































Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
 


















































Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Видео:Вычисление двойного интеграла в декартовой системе координат.Скачать

Двойной интеграл площадь окружности
Если (fleft( right) = 1) в интеграле (iintlimits_R right)dxdy>,) то двойной интеграл равен площади области интегрирования (R.)
Площадь области типа (I) (элементарной относительно оси (Oy)) (рисунок (1)) выражается через повторный интеграл в виде [A = intlimits_a^b ^ > .] Аналогично, площадь области типа (II) (элементарной относительно оси (Ox)) (рисунок (2)) описывается формулой [A = intlimits_c^d > .]
Предположим, что поверхность задана функцией (z = gleft( right),) имеющей область определения (R.) Тогда площадь такой поверхности над областью (R) определяется формулой [S = iintlimits_R > >> right)>^2> + > >> right)>^2>> dxdy> ] при условии, что частные производные ( > >normalsize>) и ( > >normalsize>) непрерывны всюду в области (R.)
💡 Видео
Вычисление двойного интеграла | Лекция 4.1 | ИнтФНПСкачать

Вычисление двойного интеграла в полярной системе координат.Скачать





























 равенство (53.2) можно записать в виде
равенство (53.2) можно записать в виде









































 область Dесть круг, кольцо или часть таковых.
область Dесть круг, кольцо или часть таковых. уравнения линий, ограничивающих область D, также преобразуются к полярным координатам. Преобразование области D в область D* не выполняют, а, совместив декартову и полярную системы координат, находят нужные пределы интегрирования по
уравнения линий, ограничивающих область D, также преобразуются к полярным координатам. Преобразование области D в область D* не выполняют, а, совместив декартову и полярную системы координат, находят нужные пределы интегрирования по  при ее отождествлении с точкой (х; у) области D).
при ее отождествлении с точкой (х; у) области D).























