Все свойства трапеции и окружности

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции — параллельные стороны
  • Боковые стороны — две другие стороны
  • Средняя линия — отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция — трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам
Все свойства трапеции и окружностиВсе свойства трапеции и окружности
Рис.1Рис.2

Содержание
  1. Основные свойства трапеции
  2. Сторона трапеции
  3. Формулы определения длин сторон трапеции:
  4. Средняя линия трапеции
  5. Формулы определения длины средней линии трапеции:
  6. Высота трапеции
  7. Формулы определения длины высоты трапеции:
  8. Диагонали трапеции
  9. Формулы определения длины диагоналей трапеции:
  10. Площадь трапеции
  11. Формулы определения площади трапеции:
  12. Периметр трапеции
  13. Формула определения периметра трапеции:
  14. Окружность описанная вокруг трапеции
  15. Формула определения радиуса описанной вокруг трапеции окружности:
  16. Окружность вписанная в трапецию
  17. Формула определения радиуса вписанной в трапецию окружности
  18. Другие отрезки разносторонней трапеции
  19. Формулы определения длин отрезков проходящих через трапецию:
  20. Трапеция.
  21. Трапеция. Свойства трапеции
  22. Свойства трапеции
  23. Свойства и признаки равнобедренной трапеции
  24. Вписанная окружность
  25. Площадь
  26. 💥 Видео

Видео:Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

m =a + b
2

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Видео:ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 класс

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a — h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a — c· cos α — d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с =hd =h
sin αsin β

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

m =a + b
2

2. Формула определения длины средней линии через площадь и высоту:

m =S
h

Видео:Трапеция и вписанная окружностьСкачать

Трапеция и вписанная окружность

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
a + ba + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
2 m2 m

4. Формула высоты трапеции через площадь и длины оснований:

h =2S
a + b

5. Формула высоты трапеции через площадь и длину средней линии:

h =S
m

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 — 2 ad· cos β

d 2 = √ a 2 + c 2 — 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 =d 2 + ab —a ( d 2 — c 2 )
a — b
d 2 =c 2 + ab —a ( c 2 — d 2 )
a — b

d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab — d 2 2

d 2 = √ c 2 + d 2 + 2 ab — d 1 2

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

S =( a + b )· h
2

3. Формула площади через диагонали и угол между ними:

S =d 1 d 2· sin γ=d 1 d 2· sin δ
22

4. Формула площади через четыре стороны:

S =a + bc 2 —(( a — b ) 2 + c 2 — d 2)2
22( a — b )

5. Формула Герона для трапеции

S =a + b√ ( p — a )( p — b )( p — a — c )( p — a — d )
| a — b |

где

p =a + b + c + d— полупериметр трапеции.
2

Видео:Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Геометрия Задача № 26  Найти радиус вписанной в трапецию окружности

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Видео:Трапеция в окружности. Задача Шаталова.Скачать

Трапеция в окружности. Задача Шаталова.

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R =a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

где

p =a + c + d 1
2

a — большее основание

Видео:Замечательное свойство трапеции | ЕГЭ по математике 2020Скачать

Замечательное свойство трапеции | ЕГЭ по математике 2020

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

r =h
2

Видео:Геометрия 8 класс (Урок№4 - Трапеция)Скачать

Геометрия 8 класс (Урок№4 - Трапеция)

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL =bKN = ML =aTO = OQ =a · b
22a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:8 класс, 6 урок, ТрапецияСкачать

8 класс, 6 урок, Трапеция

Трапеция.

Все свойства трапеции и окружности

Трапеция — четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются её основаниями, а две другие — боковыми сторонами.

Трапеция называется равнобедренной, если её боковые стороны равны.

Трапеция называется прямоугольной, если у нее два угла прямые.

Основные свойства трапеции:

  1. Сумма углов при каждой боковой стороне трапеции равна 180°.
  2. Средняя линия трапеция параллельна её основаниям и равна их полусумме.
  3. В любой трапеции следующие точки лежат на одной прямой: точка пересечения продолжений боковых сторон, середины оснований и точка пересечения диагоналей.
  4. Треугольники, образованные отрезками диагоналей и основаниями трапеции, подобны.
  5. Треугольники, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.
  6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
  7. Если сумма углов, при любом основании трапеции, равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
  8. Биссектриса любого угла трапеции отсекает от нее равнобедренный треугольник.
  9. Биссектрисы углов, при боковой стороне трапеции, перпендикулярны.
  10. Если в трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
  11. Отрезок, заключенный между боковых сторон трапеции, параллельный основаниям трапеции и проходящий через точку пересечения ее диагоналей — среднее гармоническое оснований трапеции.

Свойства равнобедренной трапеции:

  1. Диагонали равны.
  2. Углы при основании равны.
  3. Сумма противоположных углов равна 180°.
  4. Около равнобедренной трапеции можно описать окружность.
  5. Высота, опущенная из вершины тупого угла равнобедренной трапеции, делит большее основание трапеции на два отрезка, больший из которых равен полусумме оснований, а меньший — полуразности оснований.

Описанная трапеция:

  1. Если вокруг трапеции можно описать окружность, то трапеция равнобедренная.
  2. Радиус вписанной окружности равен среднему геометрическому длин отрезков, на которые радиус вписанной окружности делит боковую сторону, точкой касания.
  3. Радиус вписанной окружности равен половине высоты трапеции.

Вписанная трапеция:

  1. Трапецию можно вписать в окружность,если сумма длин оснований равна сумме длин боковых сторон.

Площадь трапеции:

  1. Формула площади трапеции через основания и высоту: S=0,5·(a+b)·h.
  2. Формула площади трапеции через диагонали и угол между ними: S=0,5·d1·d2·sinφ.

Видео:Геометрия 8. Урок 6 - ТрапецияСкачать

Геометрия 8. Урок 6 - Трапеция

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Все свойства трапеции и окружности

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Все свойства трапеции и окружности

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Все свойства трапеции и окружности

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Все свойства трапеции и окружности

Видео:Всё о трапеции за 60 секундСкачать

Всё о трапеции за 60 секунд

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Все свойства трапеции и окружности

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Все свойства трапеции и окружности

3. Треугольники Все свойства трапеции и окружностии Все свойства трапеции и окружности, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Все свойства трапеции и окружности

Отношение площадей этих треугольников есть Все свойства трапеции и окружности.

Все свойства трапеции и окружности

4. Треугольники Все свойства трапеции и окружностии Все свойства трапеции и окружности, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Все свойства трапеции и окружности

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Все свойства трапеции и окружности

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Все свойства трапеции и окружности

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Все свойства трапеции и окружности

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Все свойства трапеции и окружности

Видео:Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.Скачать

Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Все свойства трапеции и окружности

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Все свойства трапеции и окружности

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Все свойства трапеции и окружности

Видео:№1,16 Свойства трапеции. Планиметрия ЕГЭ 2023 по математикеСкачать

№1,16 Свойства трапеции. Планиметрия ЕГЭ 2023 по математике

Вписанная окружность

Если в трапецию вписана окружность с радиусом Все свойства трапеции и окружностии она делит боковую сторону точкой касания на два отрезка — Все свойства трапеции и окружностии Все свойства трапеции и окружности, то Все свойства трапеции и окружности

Все свойства трапеции и окружности

Видео:Трапеция. 8 класс.Скачать

Трапеция. 8 класс.

Площадь

Все свойства трапеции и окружностиили Все свойства трапеции и окружностигде Все свойства трапеции и окружности– средняя линия

Все свойства трапеции и окружности

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

💥 Видео

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Окружность и трапеция | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис Трушин +Скачать

Окружность и трапеция  | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис Трушин +

СРЕДНЯЯ ЛИНИЯ ТРАПЕЦИИ #математика #егэ #shorts #профильныйегэСкачать

СРЕДНЯЯ ЛИНИЯ ТРАПЕЦИИ  #математика #егэ  #shorts #профильныйегэ
Поделиться или сохранить к себе: