Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать
четвёртый класс
Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
И всё-таки она вертится…
Как хорошо, когда задача имеет несколько решений. Есть место для творчества.
Как поднимается настроение, когда решение задачи неявное и не лежит на поверхности. Можно выйти за рамки и почувствовать себя свободным.
На уроке математики у нас возникла дискуссия на тему — является ли равносторонний треугольник равнобедренным. Одни утверждали, что да, другие с ними спорили.
Пришлось обратиться к самым умным сайтам в интернете и побеспокоить дедушек с математическим образованием.
И вот что мы выяснили.
Определение: равнобедренный треугольник — это треугольник, в котором две стороны равны по длине.
Из определения равнобедренного треугольника следует, что правильный (равносторонний) треугольник также является равнобедренным.
Если взять длины сторон, как признак, и разделить треугольники по типам, то типы будут следующие: разносторонний, равнобедренный и частный случай равнобедренного — равносторонний.
Условие равенства двух сторон является необходимым и достаточным, чтобы считать треугольник равнобедренным.
Условие достаточности может выполняться и не выполняться в остроугольном, тупоугольном и прямоугольном треугольнике. Но в равностороннем треугольнике оно выполняется всегда.
Следовательно равносторонний треугольник всегда является равнобедренным.
Рассмотрим рисунок и вспомним определение.
АВ=ВС — следовательно, Δ АВС является равнобедренным (по определению).
ВС=СА — следовательно, Δ АВС является равнобедренным (по определению).
СА=АВ — следовательно, Δ АВС является равнобедренным (по определению).
Как видим, равносторонний треугольник АВС является не просто равнобедренным, а трижды равнобедренным.
Видео:Всякий равносторонний треугольник является равнобедренным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Равнобедренный треугольник: свойства, признаки и формулы
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Всякий равнобедренный треугольник является остроугольным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Определение равнобедренного треугольника
Какой треугольник называется равнобедренным?
Равнобедренным называется треугольник, у которого две стороны равны. |
Давайте посмотрим на такой треугольник:
На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.
А вот как называются стороны равнобедренного треугольника:
AB и BC — боковые стороны,
AC — основание треугольника.
Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.
Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.
Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.
Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.
Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.
Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».
В данном треугольнике медианой является отрезок BH.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.
Высотой в представленном равнобедренном треугольнике является отрезок BH.
Видео:Равнобедренный треугольникСкачать
Признаки равнобедренного треугольника
Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.
- Если у треугольника два угла равны, то этот треугольник — равнобедренный.
- Если высота треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник — равнобедренный.
- Если высота треугольника совпадает с его биссектрисой, проведенной из того же угла, то такой треугольник — равнобедренный.
- Если биссектриса треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник снова равнобедренный!
Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
Свойства равнобедренного треугольника
Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.
Теорема 1. В равнобедренном треугольнике углы при основании равны.
Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!
Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, AH = HC и BH — медиана.
Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.
Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.
Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.
Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.
Во-вторых, AH = HC и BH — медиана.
Видео:Равнобедренный треугольник. 7 класс.Скачать
Примеры решения задач
Нет ничего приятнее, чем поупражняться и поискать углы и стороны в равнобедренном треугольнике. Ну… почти ничего.
Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.
Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.
Значит, ∠A = ∠C = 80°.
Не должно вас удивить и то, что сумма углов треугольника равна 180°.
∠B = 180° − 80° − 80° = 20°.
Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.
Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.
А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.
Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.
Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.
Видео:Геометрия Равносторонний треугольникСкачать
Все равносторонний треугольник является равнобедренным
Задание 20. Какие из следующих утверждений верны?
1) Всякий равносторонний треугольник является равнобедренным.
2) Площадь треугольника меньше произведения двух его сторон.
3) Средняя линия трапеции равна сумме её оснований.
1) Да, так как у равнобедренного треугольника должны быть равны две стороны (как минимум), поэтому равносторонний – это частный случай равнобедренного треугольника.
2) Да, площадь треугольника меньше или равна половине произведения двух его сторон.
3) Нет, средняя линия трапеции равна полусумме её оснований.
🎬 Видео
Свойства равнобедренного треугольника. 7 класс.Скачать
Свойства равнобедренного треугольника #огэ #математика #shortsСкачать
Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать
Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать
№252. Основанием пирамиды DABC является равнобедренный треугольник ABC, в котором АВ = АС, ВС=6 смСкачать
Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.Скачать
Равнобедренный треугольник. Практическая часть. 7 класс.Скачать
Формулы равностороннего треугольника #shortsСкачать
Геометрия 7 класс (Урок№32 - Повторение. Равнобедренный треугольник и его свойства.)Скачать
Как построить равнобедренный или равносторонний треугольник по клеткам.Скачать
Признаки равнобедренного треугольника - геометрия 7 классСкачать
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать