Все правила треугольника 5 класс

Треугольник и его виды

Треугольник — это геометрическая фигура, состоящая из трех точек, которые не лежат на одной прямой, и трех отрезков, последовательно соединяющих эти точки. Указанные точки называются вершинами треугольника, а отрезкисторонами.

Все правила треугольника 5 класс

Данная фигура является треугольником (произносят: треугольник АВС, пишут: ∆ АВС). Точки А, В, Свершины треугольника, а отрезки АВ, ВС, АСстороны.

Периметр треугольника — это сумма длин всех его сторон.

Содержание
  1. Виды треугольников
  2. Математика. 5 класс
  3. Рисунки из треугольников
  4. Треугольник. Формулы и свойства треугольников.
  5. Типы треугольников
  6. По величине углов
  7. По числу равных сторон
  8. Вершины углы и стороны треугольника
  9. Свойства углов и сторон треугольника
  10. Теорема синусов
  11. Теорема косинусов
  12. Теорема о проекциях
  13. Формулы для вычисления длин сторон треугольника
  14. Медианы треугольника
  15. Свойства медиан треугольника:
  16. Формулы медиан треугольника
  17. Биссектрисы треугольника
  18. Свойства биссектрис треугольника:
  19. Формулы биссектрис треугольника
  20. Высоты треугольника
  21. Свойства высот треугольника
  22. Формулы высот треугольника
  23. Окружность вписанная в треугольник
  24. Свойства окружности вписанной в треугольник
  25. Формулы радиуса окружности вписанной в треугольник
  26. Окружность описанная вокруг треугольника
  27. Свойства окружности описанной вокруг треугольника
  28. Формулы радиуса окружности описанной вокруг треугольника
  29. Связь между вписанной и описанной окружностями треугольника
  30. Средняя линия треугольника
  31. Свойства средней линии треугольника
  32. Периметр треугольника
  33. Формулы площади треугольника
  34. Формула Герона
  35. Равенство треугольников
  36. Признаки равенства треугольников
  37. Первый признак равенства треугольников — по двум сторонам и углу между ними
  38. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  39. Третий признак равенства треугольников — по трем сторонам
  40. Подобие треугольников
  41. Признаки подобия треугольников
  42. Первый признак подобия треугольников
  43. Второй признак подобия треугольников
  44. Третий признак подобия треугольников
  45. 📺 Видео

Видео:ТРЕУГОЛЬНИК и его виды. §14 математика 5 классСкачать

ТРЕУГОЛЬНИК и его виды. §14 математика 5 класс

Виды треугольников

  1. Остроугольный треугольник — это треугольник, у которого всетри углаострые.

Все правила треугольника 5 класс

  1. Тупоугольный треугольник — это треугольник, у которого один из углов тупой.

Все правила треугольника 5 класс

  1. Прямоугольный треугольник — это треугольник, у которого один из углов прямой.

Все правила треугольника 5 класс

Сумма углов любого треугольника равна 180 0 .

По количеству равных сторон:

  1. Равнобедренный треугольник — это треугольник, у которого две стороны равны.

Все правила треугольника 5 класс

OXP — равнобедренный: XO = XP. Равные стороны на рисунке отмечают равным количеством чёрточек (в нашем случае одной чёрточкой). В равнобедренном треугольники равные стороны называют боковыми сторонами, а третью сторону — основанием, т.е. в ∆OXP: XO и XP — боковые стороны, а OP — основание.

  1. Равносторонний треугольник — это треугольник, у которого все стороны равны.

Все правила треугольника 5 класс

WYZ — равносторонний: WY = YZ = ZW. Равносторонний треугольник также называют правильным. Если сторона равностороннего треугольника равна Все правила треугольника 5 класс, то его периметр вычисляют по формуле:

P = 3Все правила треугольника 5 класс
  1. Разносторонний треугольник — это треугольник, у которого все стороны имеют различную длину.

Все правила треугольника 5 класс

Поделись с друзьями в социальных сетях:

Видео:Математика 5 класс (Урок№28 - Треугольники.)Скачать

Математика 5 класс (Урок№28 - Треугольники.)

Математика. 5 класс

Конспект урока

Перечень рассматриваемых вопросов:

Треугольник – это геометрическая фигура, состоящая из трёх точек, не лежащих на одной прямой и соединённых между собой.

Периметр треугольника – сумма длин всех сторон треугольника.

Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.

1. Чулков П. В. Математика: тематические тесты. 5 класс. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 классы. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.

Теоретический материал для самостоятельного изучения

Среди всех многоугольников наименьшее число сторон и углов имеет треугольник. Он является простейшей фигурой, и казалось бы, его изучение не может быть интересным. Однако существует множество видов треугольников. О них мы и поговорим.

Отметим какие-нибудь три точки, не лежащие на одной прямой – например, А, В, С. Соединим их с помощью линейки. Получим геометрическую фигуру, которая называется треугольником. Отмеченные три точки А, В, С называются вершинами, отрезки АВ, ВС, АС – сторонами треугольника, а углы А, В, С – углами треугольника.

Все правила треугольника 5 класс

Все треугольники можно разделить на группы по сторонам:

— если равных сторон нет – это разносторонний треугольник;

— если две стороны равны – это равнобедренный треугольник;

— если все стороны равны – это равносторонний треугольник.

Треугольники можно разделить на группы в зависимости от углов:

— если есть тупой угол – это тупоугольный треугольник;

— если все углы острые – это остроугольный треугольник;

— если есть прямой угол – это прямоугольный треугольник.

Все правила треугольника 5 класс

Треугольники, соединяясь друг с другом, могут образовывать другие фигуры.

Попробуем нарисовать прямоугольный треугольник на листе в клетку. Мы знаем, что сторона стандартной клетки – пять миллиметров, следовательно, две клетки – это один сантиметр.

По сторонам клетки проведём отрезки заданной длины из одной точки. В нашем случае из точки А проведём отрезки длиной четыре и три сантиметра, что соответствует восьми и шести клеткам. На концах отрезков поставим точки В и С и соединим их между собой. Таким образом, мы построили прямоугольный треугольник АВС.

Все правила треугольника 5 класс

А теперь рассмотрим свойства треугольников. Одно из них – жёсткость. Это свойство заключается в том, что, если взять три рейки и соединить их попарно, то получится треугольник, изменить форму которого можно лишь сломав рейку.

Рассмотрим ещё одно свойство треугольников. Оно заключается в том, что длина каждой стороны треугольника всегда меньше суммы двух других сторон.

Это свойство можно использовать для проверки возможности построения треугольника по определённым сторонам. То есть, если свойство не выполняется, то такого треугольника не может быть.

Если мы знаем стороны треугольника, то можем найти его периметр как сумму длин всех его сторон. Например, периметр треугольника АВС – это сумма сторон АВ, АС и ВС.

Все правила треугольника 5 класс

Измерим с помощью линейки стороны треугольника и рассчитаем его периметр.

По результатам измерения стороны, соответственно, равны пяти, шести и семи сантиметрам.

Значит, периметр равен восемнадцати сантиметрам, то есть сумме всех сторон.

Говоря о треугольниках, стоит упомянуть, что они бывают как одинаковыми, так и разными. Определить, равные или разные треугольники, можно способом наложения. Если треугольник полностью накладывается на другой треугольник, такие треугольники равны. В противном случае треугольники не будут равными.

Видео:Треугольник и его виды. 5 классСкачать

Треугольник и его виды. 5 класс

Рисунки из треугольников

Многие люди, как маленькие, так и взрослые, очень любят рисовать. Но иногда одного желания рисовать недостаточно. Для того чтобы облегчить процесс создания простейших картинок, инженер Эриф Мд. Вейлиула Байан, разработчик инновационного контента для детей, создал схемы, по которым, имея базовые навыки работы с чертёжными инструментами, можно создать милые и забавные картинки с животными и птицами.

Похожие схемы частично есть в открытом доступе, поэтому каждый желающий может приобщиться к миру изобразительного искусства через поэтапное прорисовывание простых картинок.

Все правила треугольника 5 класс

№ 1. В треугольнике все стороны равны 15 см. Чему равен периметр треугольника?

Решение: для нахождения периметра используем формулу Р = АВ + АС + ВС.

Так как у этого треугольника стороны равны, то Р = 15 см + 15 см + 15 см = 45 см

№ 2. Сопоставьте треугольники с их видами (по углам).

Все правила треугольника 5 класс

Решение: в задаче требуется сопоставить треугольники со следующими видами по углам: остроугольный, прямоугольный, тупоугольный. Согласно определению, прямоугольный треугольник имеет один угол 90 градусов: этому треугольнику соответствует второй треугольник. А тупоугольный треугольник имеет один угол больше 90 градусов: он отображён третьим по счёту. Как мы знаем, остроугольный треугольник имеет три угла меньше 90 градусов, так что в этом случае подходит треугольник, изображённый первым слева.

Видео:КАК ИЗМЕРИТЬ УГЛЫ ТРЕУГОЛЬНИКА ТРАНСПОРТИРОМ? Примеры | МАТЕМАТИКА 5 классСкачать

КАК ИЗМЕРИТЬ УГЛЫ ТРЕУГОЛЬНИКА ТРАНСПОРТИРОМ? Примеры | МАТЕМАТИКА 5 класс

Треугольник. Формулы и свойства треугольников.

Видео:ЕГЭ 2024. ВСЁ ПРО ТРЕУГОЛЬНИКИ за 15 минутСкачать

ЕГЭ 2024. ВСЁ ПРО ТРЕУГОЛЬНИКИ за 15 минут

Типы треугольников

По величине углов

Все правила треугольника 5 класс

Все правила треугольника 5 класс

Все правила треугольника 5 класс

По числу равных сторон

Все правила треугольника 5 класс

Все правила треугольника 5 класс

Все правила треугольника 5 класс

Видео:математика 5 класс Треугольник и его виды. Построение треугольниковСкачать

математика 5 класс  Треугольник и его виды. Построение треугольников

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Все правила треугольника 5 класс

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Виды треугольниковСкачать

Виды треугольников

Медианы треугольника

Все правила треугольника 5 класс

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Виды треугольниковСкачать

Виды треугольников

Биссектрисы треугольника

Все правила треугольника 5 класс

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Математика 5 класс: Треугольник и его виды.Скачать

Математика 5 класс: Треугольник и его виды.

Высоты треугольника

Все правила треугольника 5 класс

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Окружность вписанная в треугольник

Все правила треугольника 5 класс

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Сравнение углов. Виды углов. Чертежный треугольник. 5 класс.Скачать

Сравнение углов. Виды углов. Чертежный треугольник. 5 класс.

Окружность описанная вокруг треугольника

Все правила треугольника 5 класс

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Связь между вписанной и описанной окружностями треугольника

Видео:ТРЕУГОЛЬНИКИ И ИХ ВИДЫ. Видеоурок | МАТЕМАТИКА 5 классСкачать

ТРЕУГОЛЬНИКИ И ИХ ВИДЫ. Видеоурок | МАТЕМАТИКА 5 класс

Средняя линия треугольника

Свойства средней линии треугольника

Все правила треугольника 5 класс

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Периметр треугольника

Все правила треугольника 5 класс

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:КАК НАЙТИ ПЕРИМЕТР ТРЕУГОЛЬНИКА? Примеры | МАТЕМАТИКА 5 классСкачать

КАК НАЙТИ ПЕРИМЕТР ТРЕУГОЛЬНИКА? Примеры | МАТЕМАТИКА 5 класс

Формулы площади треугольника

Все правила треугольника 5 класс

Формула Герона

S =a · b · с
4R

Видео:МАТЕМАТИКА 5 класс: Отрезок | Длина отрезка | ТреугольникСкачать

МАТЕМАТИКА 5 класс: Отрезок | Длина отрезка | Треугольник

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Подобие треугольников

Все правила треугольника 5 класс

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

📺 Видео

ВСЯ математика 5-го класса в одном видео! Альфа-школаСкачать

ВСЯ математика 5-го класса в одном видео! Альфа-школа

Отрезок. Длина отрезка. Треугольник | Математика 5 класс #2 | ИнфоурокСкачать

Отрезок. Длина отрезка. Треугольник | Математика 5 класс #2 | Инфоурок

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика
Поделиться или сохранить к себе: