Все грани пирамиды треугольники

Пирамида

Пирамида – многогранник, основание которого — многоугольник , а остальные грани — треугольники, имеющие общую вершину.

Все грани пирамиды треугольники

По числу углов основания различают пирамиды треугольные , четырёхугольные и т. д.

Вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания.

Основание — многоугольник, которому не принадлежит вершина пирамиды.

Апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины.

Все грани пирамиды треугольники

Высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Все грани пирамиды треугольники

Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания.

Все грани пирамиды треугольники

Видео:10 класс, 33 урок, Правильная пирамидаСкачать

10 класс, 33 урок, Правильная пирамида

Некоторые свойства пирамиды

1) Если все боковые ребра равны, то

около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр

Все грани пирамиды треугольники

боковые ребра образуют с плоскостью основания равные углы

Все грани пирамиды треугольники

Верно и обратное.

Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.

Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

2) Если все грани пирамиды наклонены к плоскости основания под одним углом , то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр

Все грани пирамиды треугольники

Верно и обратное.

Видео:Подсчёт количества граней и рёбер у трёхмерных фигур | Фигура | ГеометрияСкачать

Подсчёт количества граней и рёбер у трёхмерных фигур | Фигура | Геометрия

Виды пирамид

Пирамида называется правильной , если основанием её является правильный многоугольник, а вершина проецируется в центр основания.

Все грани пирамиды треугольники

Для правильной пирамиды справедливо:

– боковые ребра правильной пирамиды равны;

– в правильной пирамиде все боковые грани — равные равнобедренные треугольники;

– в любую правильную пирамиду можно вписать сферу;

– около любой правильной пирамиды можно описать сферу;

– площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Все грани пирамиды треугольники

Пирамида называется прямоугольной , если одно из боковых рёбер пирамиды перпендикулярно основанию. Тогда это ребро и есть высота пирамиды.

Все грани пирамиды треугольники

Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.

Все грани пирамиды треугольники

Тетраэдр – треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды.

Видео:Как строить сечения тетраэдра и пирамидыСкачать

Как строить сечения тетраэдра и пирамиды

Все грани пирамиды треугольники

14.1. Определение пирамиды и её элементов

Определение. Пирамидой называется многогранник, у которого одна грань — многоугольник, а остальные грани — треугольники с общей вершиной (рис. 95, 96).

Все грани пирамиды треугольники

Все грани пирамиды треугольники

Многоугольник называется основанием пирамиды, остальные грани — боковыми гранями пирамиды, их общая вершина — вершиной пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами её основания, называются боковыми рёбрами пирамиды .

Пирамиду с основанием АВСDЕ и вершиной Р обозначают PABCDE .

Перпендикуляр, опущенный из вершины пирамиды на плоскость её основания, называется высотой пирамиды . Длину этого перпендикуляра также называют высотой пирамиды.

Пирамида называется n-угольной, если её основанием является n-угольник .

На рисунке 96 изображена четырёхугольная пирамида PABCD, у которой: четырёхугольник ABCD — основание пирамиды; точка Р — вершина пирамиды; отрезки РA, РВ, PC, PD — боковые рёбра пирамиды; отрезки АВ, ВС, CD, DA — стороны (рёбра) основания пирамиды; отрезок РО — высота пирамиды; треугольники РАВ, РВС, PCD, PDA — боковые грани пирамиды.

Все грани пирамиды треугольники

У n- угольной пирамиды имеется ( n + 1) вершин, 2 n рёбер и ( n + 1) граней. Диагоналей пирамида не имеет. В пирамиде различают плоские углы при её вершине и двугранные углы при её рёбрах. Двугранным углом при ребре пирамиды называют содержащий пирамиду двугранный угол, образованный плоскостями граней, проходящими через данное ребро.

Треугольную пирамиду (рис. 97) называют также тетраэдром ( « тетраэдр» по-гречески означает «четырёхгранник» ) . Тетраэдр — это многогранник с наименьшим числом граней. Любая грань тетраэдра может быть принята за его основание; это отличает тетраэдр от всех остальных пирамид.

Любую пирамиду можно разбить на некоторое число тетраэдров, а любой выпуклый многогранник — на некоторое число пирамид. Для этого достаточно, например, взять любую точку внутри данного многогранника и соединить её отрезками со всеми его вершинами. Такое разбиение часто используется при нахождении объёмов многогранников.

14.2. Некоторые виды пирамид

Если все боковые рёбра пирамиды составляют с плоскостью основания равные углы, то : а ) основание высоты пирамиды совпадает с центром окружности, описанной около основания пирамиды ; б ) все боковые рёбра пирамиды равны между собой.

Все грани пирамиды треугольники

Доказательств о. а) Пусть отрезок РО — высота пирамиды PABCDEF, все рёбра которой составляют с плоскостью основания угол ϕ (рис. 98). Тогда прямоугольные треугольники РОА, POB, POC, POD, РОЕ и POF, имея общий катет РО, равны между собой (по катету и острому углу ϕ ) . Из равенства этих треугольников следует: ОА = OВ = ОС = OD = OE = OF, т. е. вершины основания пирамиды равноудалены от основания О её высоты РО. Это означает, что точка О — центр окружности, описанной около основания ABCDEF данной пирамиды.

б) Из ОА = OВ = ОС = OD = ОЕ = OF следует, что боковые рёбра РА, РВ, PC, PD, РЕ, PF пирамиды равны, как наклонные, имеющие равные проекции, т. е. РА = РВ = PC = PD = РЕ = PF. Что и требовалось доказать. ▼

Вы самостоятельно можете доказать обратные утверждения.

1. Если основание высоты пирамиды совпадает с центром окружности, описанной около её основания, то: а) все боковые рёбра пирамиды образуют с плоскостью основания равные углы; б) все боковые рёбра пирамиды равны между собой.

2. Если все боковые рёбра пирамиды равны, то: а) основание высоты пирамиды совпадает с центром окружности, описанной около основания пирамиды; б) все боковые рёбра пирамиды составляют с плоскостью её основания равные между собой углы.

Также имеет место следующее утверждение.

Если высота пирамиды пересекает её основание и все боковые грани пирамиды образуют с плоскостью основания равные двугранные углы, то основание высоты пирамиды совпадает с центром окружности, вписанной в её основание.

Доказательств о. Пусть РО — высота пирамиды PABCDE, боковые грани которой образуют с плоскостью основания пирамиды двугранные углы, равные ϕ (рис. 99).

Все грани пирамиды треугольники

Проведём высоты РН 1 , РH 2 , РН 3 , PH 4 , РH 5 боковых граней.

Тогда по теореме о трёх перпендикулярах получаем OH 1 ⟂ AB, OH 2 ⟂ BC, OH 3 ⟂ CD, OH 4 ⟂ DE, OH 5 ⟂ EA, следовательно, ∠ OH 1 P = ∠ OH 2 P = ∠ OH 3 P = ∠ OH 4 P = ∠ OH 5 P = ϕ . Поэтому △ OH 1 P = △ OH 2 P = △ OH 3 P = △ OH 4 P = △ OH 5 P (как прямоугольные с общим катетом OP и острым углом ϕ ) . Из равенства этих треугольников следует ОН 1 = OH 2 = OH 3 = ОН 4 = ОН 5 , т. е. точка О — основание высоты РО пирамиды — равноудалена от всех сторон многоугольника ABCDE. Это означает, что точка O является центром окружности, вписанной в основание ABCDE данной пирамиды. Теорема доказана. ▼

Самостоятельно докажите обратное утверждение.

Если вершина пирамиды проектируется в центр окружности, вписанной в основание пирамиды, то боковые грани пирамиды образуют с плоскостью основания равные двугранные углы.

Перечислим ещё несколько часто встречающихся в задачах видов пирамид.

Все грани пирамиды треугольники

Все грани пирамиды треугольники

Все грани пирамиды треугольники

• Пирамида, ровно одна боковая грань которой перпендикулярна плоскости основания. Высота такой пирамиды лежит в этой, перпендикулярной основанию, грани (рис. 100).

• Пирамида, две соседние боковые грани которой перпендикулярны плоскости основания. Высотой такой пирамиды служит боковое ребро, общее для этих граней (рис. 101).

• Пирамида, две не соседние боковые грани которой перпендикулярны плоскости основания. Высота такой пирамиды лежит на прямой пересечения плоскостей этих граней (рис. 102).

14.3. Правильная пирамида

Определение. Пирамида называется правильной, если её основание — правильный многоугольник и вершина пирамиды проектируется в центр этого основания.

Все грани пирамиды треугольники

Из определения следует алгоритм построения изображения правильных пирамид, что, в свою очередь, доказывает существование таких пирамид.

Для построения изображения правильной пирамиды достаточно построить изображение соответствующего правильного многоугольника (основания пирамиды) и его центра. Затем из построенного центра провести перпендикуляр к плоскости многоугольника и выбрать на этом перпендикуляре (в качестве вершины пирамиды) любую точку, отличную от центра многоугольника. Соединив отрезками прямых эту точку со всеми вершинами многоугольника, получим изображение правильной пирамиды.

На рисунке 103, а, б, в построены изображения правильных пирамид: а) треугольной; б) четырёхугольной; в) шестиугольной.

Правильные пирамиды обладают замечательным свойством.

В правильной пирамиде все боковые рёбра равны, а все боковые грани — равные равнобедренные треугольники.

Все грани пирамиды треугольники

Доказательств о. Рассмотрим правильную n- угольную пирамиду РА 1 А 2 . A n . Пусть точка O — центр n- угольника A 1 A 2 A 3 . A n ; отрезок РО — перпендикуляр к плоскости основания пирамиды (рис. 104).

Так как центр правильного многоугольника является центром окружности, описанной около этого многоугольника, то ОА 1 = OA 2 = OA 3 = . = OA n (как радиусы описанной окружности). Тогда равны боковые рёбра пирамиды, как наклонные к плоскости её основания, имеющие равные проекции, т. е. PA 1 = PA 2 = PA 3 = . = PA n .

Таким образом, имеем:

РА 1 = РA 2 = . = PA n (как боковые рёбра);

A 1 A 2 = A 2 A 3 = . = A n A 1 (как стороны правильного n- угольника).

Следовательно, треугольники PA 1 A 2 , РA 2 A 3 , . PA n A 1 являются равнобедренными и по третьему признаку равенства треугольников равны между собой.

Это свойство правильной пирамиды можно доказать при помощи поворота пирамиды вокруг оси, содержащей её высоту.

Так как точка О — центр правильного n- угольника A 1 A 2 A 3 . A n , лежащего в основании правильной пирамиды PA 1 A 2 . A n , РО — перпендикуляр к плоскости её основания, то при вращении данной пирамиды вокруг оси ОР на угол, равный Все грани пирамиды треугольники(где k = 1, 2, 3, . n ), происходит самосовмещение этой пирамиды: вершины основания пирамиды отображаются на его же вершины (основание совмещается с самим собой); вершина Р (как точка оси вращения) отображается на себя. Следовательно, боковые рёбра пирамиды отображаются на боковые рёбра, а боковые грани пирамиды — на её боковые грани. А так как вращение вокруг прямой — движение, то все боковые рёбра правильной пирамиды равны между собой, а грани являются равными равнобедренными (почему?) треугольниками. Утверждение доказано. ▼

Следствием доказанного выше является утверждение.

Все боковые рёбра правильной пирамиды образуют с плоскостью основания равные углы, а все боковые грани — равные двугранные углы.

Докажите это предложение самостоятельно.

Высота боковой грани правильной пирамиды, проведённая к ребру её основания, называется апофемой пирамиды. На рисунке 104 отрезок РН — одна из апофем пирамиды.

Все апофемы правильной пирамиды равны вследствие равенства всех её боковых граней.

Имеют место признаки правильной пирамиды:

Пирамида, в основании которой лежит правильный многоугольник, является правильной, если: а) все её боковые рёбра равны; б) все её боковые рёбра образуют с плоскостью основания равные углы; в) все её боковые грани — равные равнобедренные треугольники.

Докажите это самостоятельно.

 ЗАДАЧА (2.245). Высота правильной четырёхугольной пирамиды равна h и образует с боковой гранью угол α . Через сторону основания пирамиды проведена плоскость, перпендикулярная противоположной грани и пересекающая её. Найти площадь сечения.

Дан о: PABCD — правильная пирамида (рис. 105); РО — высота пирамиды, РО = h ; ∠ OPF = α .

Решени е. Первый спосо б . Пусть отрезок EF — средняя линия основания пирамиды. Тогда AD ⟂ EF, AD ⟂ PF ⇒ АD ⟂ ( РEF ) ⇒ ( PEF ) ⟂ ( ADP ) (по признаку перпендикулярности двух плоскостей). Поэтому прямая PF является ортогональной проекцией прямой РO на плоскость ADP. Значит, ∠ OPF — угол между высотой PO и боковой гранью ADP пирамиды: ∠ OPF = α .

Все грани пирамиды треугольники

Далее имеем: AD ⟂ ( PEF ), ВС || AD ⇒ ВC ⟂ ( PEF ) ⇒ прямая ВС перпендикулярна любой прямой плоскости PEF. Поэтому если FL ⟂ РЕ (в плоскости PEF ) , то BС ⟂ FL. Тогда FL ⟂ ВС, FL ⟂ PE ⇒ FL ⟂ ( BCP ) ⇒ ( ADL ) ⟂ ( ВCР ) (по признаку перпендикулярности двух плоскостей); при этом ( ADL ) ∩ ( ВСР ) = МK , МK || AD, так как плоскости ВСР и АDL проходят через параллельные прямые ВС и AD. Значит, сечение ADKM — трапеция, у которой FL — высота (почему?), откуда

S сеч = Все грани пирамиды треугольники• FL.

Найдём AD, МK и FL.

В △ OPF ( ∠ POF = 90 ° ):

OF = OP • tg α = h • tg α ; PF = Все грани пирамиды треугольники= Все грани пирамиды треугольники= PE.

EF = 2 FO = 2 h • tg α = ВС.

В плоскости PEF получаем:

FL ⟂ РЕ, РО ⟂ EF ⇒ ∠ EFL = ∠ OPE = α .

Тогда в △ ЕFL : FL = ЕF • cos α = 2 h • tg α • cos α = 2 h sin α ;

в △ PLF ( ∠ PLF = 90 ° , ∠ PFL = 90 ° – 2 α ):

PL = PF • sin (90 ° – 2 α ) = PF • cos 2 α = Все грани пирамиды треугольники.

Так как MK | | BC, то △ МKР ∾ △ ВСР, откуда

Все грани пирамиды треугольники= Все грани пирамиды треугольники⇒ MK = Все грани пирамиды треугольники= Все грани пирамиды треугольники=
= 2 h tg α • cos 2 α .

AD = EF = 2 h • tg α , FL = 2 h • sin α , MK = 2 h • tg α • cos 2 α .

S сеч = Все грани пирамиды треугольники• FL = Все грани пирамиды треугольники• 2 h • sin α =
= Все грани пирамиды треугольники= 4 h 2 • sin 2 α • cos α .

Все грани пирамиды треугольники

Замечание. Отрезок MK можно найти следующим образом. Сечением данной пирамиды плоскостью, проходящей через прямую MK параллельно основанию пирамиды, является квадрат MKD 1 A 1 (см. рис. 105). F 1 = A 1 D 1 ∩ PF. У этого квадрата LF 1 = MK. Найдём F 1 L .

В треугольнике LFF 1 имеем ∠ FLF 1 = α ( LF 1 || EF ) ,

∠ F 1 FL = ∠ OFP – ∠ OFL = (90 ° – α ) – α = 90 ° – 2 α ;

∠ FF 1 L = 180 ° – ∠ OFF 1 = 90 ° + α . Тогда по теореме синусов

Все грани пирамиды треугольники= Все грани пирамиды треугольники
⇒ LF 1 = Все грани пирамиды треугольники= Все грани пирамиды треугольники.

Все грани пирамиды треугольники

Значит, MK = LF 1 = 2 h • tg α • cos 2 α .

Второй спосо б . Пусть точки M 1 , K 1 , L 1 — ортогональные проекции на плоскость основания соответственно точек М, K, L (рис. 105, 106). Так как плоскости АСР, BDP и EFP перпендикулярны плоскости основания пирамиды, то ортогональными проекциями прямых PC, РВ и РЕ на эту плоскость являются соответственно прямые АС, BD и EF. Следовательно, M 1 ∈ BD, K 1 ∈ AC, L 1 ∈ EF, причём четырёхугольник ADK 1 M 1 — равнобедренная трапеция.

Таким образом, трапеция ADK 1 M 1 — ортогональная проекция сечения ADKM. Это означает, что S ADKM = Все грани пирамиды треугольники. Найдём Все грани пирамиды треугольники. Так как диагонали квадрата взаимно перпендикулярны и M 1 K 1 || AD, то OL 1 = L 1 K 1 , OF = FD. Значит,

Все грани пирамиды треугольники= Все грани пирамиды треугольники• L 1 F = Все грани пирамиды треугольники• FL 1 = Все грани пирамиды треугольники.

S ADKM = Все грани пирамиды треугольники= Все грани пирамиды треугольники= 4 h 2 • sin 2 α • cos α .

Ответ: 4 h 2 • sin 2 α • cos α .

1 4.4. Площади боковой и полной поверхностей пирамиды

Поверхность пирамиды состоит из основания и боковых граней. В этой связи различают боковую и полную поверхности пирамиды, а также их площади.

Площадью боковой поверхности пирамиды (обозначают S бок ) называется сумма площадей всех её боковых граней: S бок = S 1 + S 2 + . + S n , где S 1 , S 2 , . S n — площади боковых граней пирамиды.

Площадью полной поверхности пирамиды (обозначают S полн ) называется сумма площадей всех её граней, т. е. сумма площади основания пирамиды и площади её боковой поверхности.

Из определения следует: S полн = S бок + S осн .

О площади боковой поверхности правильной пирамиды имеет место следующая теорема.

Все грани пирамиды треугольники

Теорема 18. Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.

Все грани пирамиды треугольники

Доказательств о. PA 1 A 2 . A n — правильная пирамида, a — длина её апофемы (рис. 107).

Боковые грани правильной пирамиды — равные равнобедренные треугольники, у которых основаниями являются стороны правильного n- угольника A 1 A 2 . A n , а высоты равны апофеме пирамиды, т. е.

РE 1 = РE 2 = PE 3 = . = PE n = a.

S бок = S △ PA 1 A 2 + S △ PA 2 A 3 + . + S △ PA n A 1 =
= Все грани пирамиды треугольникиA 1 A 2 • PE 1 + Все грани пирамиды треугольникиA 2 A 3 • PE 2 + . + Все грани пирамиды треугольникиA n A 1 • PE n =
= Все грани пирамиды треугольникиa • ( A 1 A 2 + A 2 A 3 + . + A n A 1 ) = Все грани пирамиды треугольникиP • a,

где Р — периметр основания пирамиды. Теорема доказана. ▼

Все грани пирамиды треугольники

Теорема 19. Если все боковые грани пирамиды наклонены к плоскости основания под углом ϕ и высота пересекает основание, то S бок = Все грани пирамиды треугольники.

Все грани пирамиды треугольники

Доказательств о. Пусть отрезок PO — высота пирамиды РA 1 A 2 A 3 . A n , все боковые грани которой образуют с плоскостью основания углы, равные ϕ (рис. 108); отрезки PH 1 , PH 2 , . PH n — высоты боковых граней. Тогда (по теореме о трёх перпендикулярах) OH 1 ⟂ A 1 A 2 , OH 2 ⟂ A 2 A 3 , . OH n ⟂ A n A 1 . Значит,

∠ OH 1 P = ∠ OH 2 P = ∠ OH 3 P = .
. = ∠ OH n P = ϕ .

Так как точка О является центром круга, вписанного в основание пирамиды (почему?), то эта точка лежит внутри n- угольника A 1 A 2 A 3 . A n . Поэтому n- угольник A 1 A 2 . A n является объединением непересекающихся треугольников A 1 OA 2 , A 2 OA 3 , . A n OA 1 . Эти треугольники являются ортогональными проекциями на плоскость основания пирамиды её соответствующих боковых граней. По теореме о площади ортогональной проекции многоугольника имеем:

S △ A 1 OA 2 = S △ A 1 PA 2 • cos ϕ ,
S △ A 2 OA 3 = S △ A 2 PA 3 • cos ϕ ,
.
S △ A n OA 1 = S △ A n PA 1 • cos ϕ .

Сложив почленно эти равенства, получим S осн = S бок • cos ϕ , откуда S бок = Все грани пирамиды треугольники. Теорема доказана. ▼

Так как все боковые грани правильной пирамиды образуют с плоскостью основания равные двугранные углы (пусть величина этих углов равна ϕ , см. рис. 107), то для площади боковой поверхности и площади основания правильной пирамиды также справедлива формула

S бок = Все грани пирамиды треугольники.

14 . 5 . Свойства параллельных сечений пирамиды

Если плоскость α параллельна основанию пирамиды и пересекает её, то в сечении пирамиды получается некоторый многоугольник (рис. 109).

Все грани пирамиды треугольники

Теорема 20. Если пирамида пересечена плоскостью, параллельной основанию, то: 1) боковые рёбра и высота делятся этой плоскостью на пропорциональные части; 2) в сечении получается многоугольник, подобный основанию; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Доказательств о. 1) Пусть сечением пирамиды PABCD плоскостью α , параллельной плоскости β её основания, является четырёхугольник A 1 B 1 C 1 D 1 (см. рис. 109).

Все грани пирамиды треугольники

Проведём высоту РО данной пирамиды и обозначим O 1 = РО ∩ α .

Рассмотрим гомотетию Все грани пирамиды треугольникис центром Р , при которой плоскость основания данной пирамиды отображается на параллельную ей плоскость α (при гомотетии плоскость, не проходящая через центр гомотетии, отображается на параллельную ей плоскость).

Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия Все грани пирамиды треугольникиотображает основание ABCD пирамиды на её параллельное сечение — многоугольник А 1 В 1 С 1 D 1 , при этом вершины А, В, С, D основания пирамиды — на вершины соответственно A 1 , B 1 , C 1 , D 1 , а точку O — на точку O 1 (почему?).

Учитывая, что отношение длин гомотетичных отрезков равно коэффициенту гомотетии, получаем:

Все грани пирамиды треугольники= Все грани пирамиды треугольники= Все грани пирамиды треугольники= Все грани пирамиды треугольники= Все грани пирамиды треугольники= k, (*)

где k — коэффициент гомотетии Все грани пирамиды треугольники. Это означает, что параллельное сечение пирамиды делит её рёбра и высоту на пропорциональные части. А поскольку гомотетия является подобием, то многоугольник A 1 B 1 C 1 D 1 , являющийся параллельным сечением пирамиды, подобен её основанию ABCD .

Вследствие того, что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии, а k = РO 1 : РО , где РO 1 и РО — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то

S A 1 B 1 C 1 D 1 : S ABCD = k 2 = Все грани пирамиды треугольники: PO 2 .

Все грани пирамиды треугольники Все грани пирамиды треугольники

Следствие. Плоскость, параллельная основанию пирамиды и пересекающая её, отсекает пирамиду, подобную данной.

14.6. Усечённая пирамида

Плоскость α , параллельная основанию пирамиды PABCD и пересекающая её, делит эту пирамиду на два многогранника: пирамиду РA 1 B 1 C 1 D 1 и многогранник ABCDA 1 B 1 C 1 D 1 (см. рис. 109).

Все грани пирамиды треугольники

Многогранник ABCDA 1 B 1 C 1 D 1 (рис. 110) называют усечённой пирамидой. Грани ABCD и A 1 B 1 C 1 D 1 , лежащие в параллельных плоскостях, называются соответственно нижним и верхним основаниями усечённой пирамиды , остальные грани — её боковыми гранями . Так как нижнее и верхнее основания усечённой пирамиды гомотетичны (т. 20), то все её боковые грани — трапеции.

Таким образом, усечённой пирамидой называется часть полной пирамиды, заключённая между её основанием и параллельным ему сечением.

У n- угольной усечённой пирамиды 2 n вершин, 3 n рёбер, ( n + 2) грани и n ( n – 3) диагоналей.

Высотой усечённой пирамиды называется перпендикуляр, проведённый из какой-нибудь точки одного основания к плоскости другого. Длину этого перпендикуляра также называют высотой усечённой пирамиды. На рисунке 110 отрезки О 1 О, B 1 K — высоты усечённой пирамиды.

Все грани пирамиды треугольники

Усечённая пирамида называется правильной, если она получена из правильной пирамиды (рис. 111).

Из теоремы 20 следует, что основания правильной усечённой пирамиды — подобные правильные многоугольники, а боковые грани — равные равнобедренные трапеции.

Высоты этих трапеций, соединяющие середины их оснований, называются апофемами усечённой пирамиды . Все её апофемы равны между собой.

Отрезок OO 1 , соединяющий центры оснований правильной усечённой пирамиды, является её высотой .

Площадью боковой поверхности усечённой пирамиды называется сумма площадей всех её боковых граней.

Для правильной усечённой пирамиды имеет место

Все грани пирамиды треугольники

Теорема 21. Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров её оснований на апофему .

Для доказательства теоремы достаточно площадь одной из боковых граней пирамиды умножить на их число. В результате получим формулу S бок = Все грани пирамиды треугольники• h , где Р 1 , P 2 — периметры нижнего и верхнего оснований усечённой пирамиды, h — её апофема.

Проведите доказательство теоремы самостоятельно.

Полная поверхность усечённой пирамиды — это объединение её оснований и боковой поверхности, поэтому для усечённой пирамиды

S полн = S бок + S 1 + S 2 ,

где S 1 и S 2 — площади большего и меньшего оснований этой пирамиды.

Для усечённой пирамиды, у которой все двугранные углы при рёбрах большего основания равны ϕ , справедливо: S бок = Все грани пирамиды треугольники. (Для вывода этой формулы достаточно учесть следующий факт: если R и r — радиусы окружностей, вписанных соответственно в большее и меньшее основания данной пирамиды, то S 1 = 0,5 • P 1 • R , S 2 = 0,5 • P 2 • r, cos ϕ = Все грани пирамиды треугольники, где h — высота боковой грани этой пирамиды.)

14 . 7 . Объём пирамиды

Все грани пирамиды треугольники

Лемма. Две треугольные пирамиды с равновеликими основаниями и равными высотами равновелики .

Доказательств о. Пусть пирамиды РАВС и P 1 A 1 B 1 C 1 имеют высоты, равные H , и равновеликие основания с площадью S ; их объёмы — соответственно V 1 и V 2 . Докажем, что V 1 = V 2 .

Расположим пирамиды РАВС и P 1 A 1 B 1 C 1 так, чтобы их основания лежали в одной плоскости, а сами пирамиды были расположены по одну сторону от этой плоскости (рис. 112). Тогда любая плоскость, параллельная плоскости оснований и пересекающая первую пирамиду, пересекает и вторую, причём по теореме о параллельных сечениях пирамиды площади этих сечений равны. Следовательно, на основании принципа Кавальери равны и объёмы этих пирамид. Лемма доказана. ▼

Все грани пирамиды треугольники

Все грани пирамиды треугольники

Теорема 22. Объём любой треугольной пирамиды равен одной трети произведения площади основания на высоту.

Все грани пирамиды треугольники

Доказательств о. Пусть А 1 AВC — данная треугольная пирамида с вершиной A 1 и основанием ABC (рис. 113). Дополним эту пирамиду до треугольной призмы ABCA 1 B 1 C 1 с тем же основанием, одним из боковых рёбер которой является боковое ребро АA 1 данной пирамиды. Это означает, что высота призмы равна высоте данной пирамиды.

Призма АВCA 1 B 1 C 1 является объединением трёх треугольных пирамид с общей вершиной A 1 : A 1 ABC, A 1 BB 1 C 1 и A 1 BCC 1 . Основания BB 1 C 1 и BCC 1 пирамид A 1 BB 1 C 1 и A 1 BCC 1 равны, а высота у них общая. Значит, по лемме эти пирамиды имеют равные объёмы.

Будем считать точку В вершиной пирамиды A 1 BB 1 C 1 , a △ A 1 B 1 C 1 — её основанием. Тогда эта пирамида равновелика пирамиде А 1 AВС, так как у них общая высота, а основания АВС и A 1 B 1 C 1 равновелики (как основания призмы). Таким образом, призма ABCA 1 B 1 C 1 является объединением трёх равновеликих пирамид, одной из которых является данная пирамида A 1 ABC. Это означает, что объём V пирамиды A 1 АВС составляет одну треть объёма призмы ABCA 1 B 1 C 1 , т. е. V = Все грани пирамиды треугольникиS ocн • Н, где Н — длина высоты призмы. Но построенная призма и данная пирамида имеют общую высоту, длина которой равна Н, следовательно, объём треугольной пирамиды вычисляется по формуле

V = Все грани пирамиды треугольникиS осн • H ,

где Н — длина высоты данной пирамиды. Теорема доказана. ▼

Все грани пирамиды треугольники

На рисунке 114 изображены треугольная призма ABCDEF и составляющие её три равновеликие треугольные пирамиды ABDF, ABCF и BDEF .

Все грани пирамиды треугольники

Для вычисления объёма n- угольной пирамиды PA 1 A 2 . A n (рис. 115) разобьём её основание A 1 A 2 . A n диагоналями A 1 A 3 , A 1 A 4 , . A 1 A n – 1 на треугольники с общей вершиной A 1 . Тогда данная пирамида разбивается в объединение пирамид PA 1 A 2 A 3 , PA 1 A 3 A 4 , . PA 1 A n – 1 A n с общей вершиной Р и общей высотой, которая равна высоте данной пирамиды. Основаниями этих пирамид являются треугольники разбиения основания данной пирамиды. Это означает (свойство 2 объёмов), что объём V пирамиды PA 1 A 2 . A n равен сумме объёмов V 1 , V 2 , . V n – 2 треугольных пирамид соответственно PA 1 A 2 A 3 , PA 1 A 3 A 4 , . PA 1 A n – 1 A n .

Пусть длина высоты пирамиды равна Н, площадь её основания — S, а площади треугольников разбиения этого основания равны S 1 , S 2 , . S n – 2 . Это означает, что S 1 + S 2 + . + S n – 2 = S. Тогда получаем:

V = V 1 + V 2 + . + V n – 2 = Все грани пирамиды треугольникиH ( S 1 + S 2 + . + S n – 2 ) = Все грани пирамиды треугольникиS • H.

Таким образом, объём любой пирамиды вычисляется по формуле

V = Все грани пирамиды треугольникиS осн • H ,

где S осн — площадь основания, Н — длина высоты пирамиды.

Все грани пирамиды треугольники

Итак, доказана теорема.

Все грани пирамиды треугольники Все грани пирамиды треугольники

Теорема 23. Объём любой пирамиды равен одной трети произведения площади основания на высоту. ▼

14.8. Об объёме тетраэдра

У тетраэдра за основание можно принять любую его грань, на каждую из которых можно провести высоту тетраэдра из вершины, противоположной этой грани. Поэтому для объёма V одного и того же тетраэдра имеют место соотношения

V = Все грани пирамиды треугольникиS 1 • h 1 = Все грани пирамиды треугольникиS 2 • h 2 = Все грани пирамиды треугольникиS 3 • h 3 = Все грани пирамиды треугольникиS 4 • h 4 ,

где S k и h k ( k = 1, 2, 3, 4) — площадь грани и длина опущенной на неё высоты. Эти соотношения часто используют при решении задач.

Заметим, что не в любом тетраэдре все четыре высоты пересекаются в одной точке (для сравнения — все три высоты любого треугольника пересекаются в одной точке). Тетраэдр, все высоты которого пересекаются в одной точке, называется ортоцентрическим.

Интересен также тетраэдр (рис. 116, а ), все грани которого равны. Такой тетраэдр называется равногранным. Его развёрткой является остроугольный треугольник (рис. 116, б ).

Докажите самостоятельно, что в равногранном тетраэдре:

— скрещивающиеся рёбра попарно равны;

— все высоты равны;

— сумма плоских углов трёхгранного угла при каждой вершине тетраэдра равна 180 ° ;

— двугранные углы при скрещивающихся рёбрах тетраэдра равны.

Все грани пирамиды треугольники

Все грани пирамиды треугольники

Не менее интересен следующий факт. Пусть дан тетраэдр A 1 C 1 BD . Проведём через каждое его ребро плоскость, параллельную скрещивающемуся с ним ребру. Проведённые шесть плоскостей при пересечении образуют некоторый параллелепипед АВСDA 1 В 1 C 1 D 1 (рис. 117), параллельные грани ABCD и A 1 B 1 C 1 D 1 которого содержат скрещивающиеся рёбра А 1 C 1 и BD данного тетраэдра. Тогда расстояние между основаниями АВСD и А 1 В 1 С 1 D 1 полученного параллелепипеда равно длине его высоты и равно расстоянию между скрещивающимися рёбрами А 1 C 1 и BD данного тетраэдра.

Этот параллелепипед можно разбить на пять тетраэдров — данный тетраэдр A 1 С 1 ВD и ещё четыре тетраэдра: A 1 ABD ; ВВ 1 A 1 C 1 ; C 1 CBD ; DD 1 A 1 C 1 . Объём каждого из четырёх последних тетраэдров равен одной трети высоты h параллелепипеда, умноженной на половину площади его основания ABCD , т. е. шестой части объёма V полученного параллелепипеда.

V A 1 C 1 BD = V – 4 • Все грани пирамиды треугольникиV = Все грани пирамиды треугольникиV = Все грани пирамиды треугольникиh • S ABCD = Все грани пирамиды треугольникиh • Все грани пирамиды треугольникиAC • BD • sin ϕ =
= Все грани пирамиды треугольникиh • A 1 C 1 • BD • sin ϕ ,

где ϕ — угол между диагоналями АС и BD параллелограмма ABCD . А так как AC || A 1 C 1 , то величина угла между скрещивающимися диагоналями A 1 С 1 и BD тетраэдра А 1 С 1 BD также равна ϕ .

Мы получили: объём тетраэдра равен одной шестой произведения длин любых двух его скрещивающихся рёбер, расстояния между ними и синуса угла между скрещивающимися прямыми, содержащими эти рёбра.

Отметим ещё несколько очевидных и менее очевидных свойств тетраэдров, связанных с их объёмами.

1. Объёмы тетраэдров с равными основаниями относятся как их высоты, опущенные на эти основания.

Все грани пирамиды треугольники

2. Объёмы тетраэдров с равными высотами относятся как площади их оснований.

3. Объёмы тетраэдров, имеющих равные трёхгранные углы, относятся, как произведения длин рёбер, образующих эти углы.

Все грани пирамиды треугольники

Используя рисунок 118, вы сможете легко доказать третье утверждение.

14.9. Объём усечённой пирамиды

Все грани пирамиды треугольники

Теорема 24. Объём усечённой пирамиды, у которой площади оснований равны S 1 и S 2 , а высота — Н , вычисляется по формуле

V = Все грани пирамиды треугольникиH ( S 1 + Все грани пирамиды треугольники+ S 2 ) .

Все грани пирамиды треугольники

Доказательств о. Пусть дана усечённая пирамида (рис. 119), у которой S 1 > S 2 , а высота OO 1 = H. Дополним эту пирамиду до полной пирамиды с вершиной Р. Объём V данной усечённой пирамиды равен разности объёмов полной и дополнительной пирамид.

Если длина высоты PO 1 дополнительной пирамиды равна x , то высота PO полной пирамиды равна H + x .

Выразим х через S 1 , S 2 и Н. По теореме 20 (o площадях параллельных сечений пирамиды) имеем

S 1 : S 2 = ( H + x ) 2 : x 2 ⇒ Все грани пирамиды треугольники: Все грани пирамиды треугольники= ( H + x ) : x ⇒
⇒ x = Все грани пирамиды треугольники.

Поэтому для объёма V усечённой пирамиды находим

V = Все грани пирамиды треугольникиS 1 ( H + x ) – Все грани пирамиды треугольникиS 2 • x = Все грани пирамиды треугольники( S 1 • H + ( S 1 – S 2 ) • x ) =
= Все грани пирамиды треугольники Все грани пирамиды треугольники= Все грани пирамиды треугольники( S 1 H + ( Все грани пирамиды треугольники+ Все грани пирамиды треугольники) H Все грани пирамиды треугольники) =
= Все грани пирамиды треугольникиH ( S 1 + Все грани пирамиды треугольники+ S 2 ) ,

Видео:КАК НАЙТИ ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ ПИРАМИДЫ?Скачать

КАК НАЙТИ ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ ПИРАМИДЫ?

Все грани пирамиды треугольники

Пирамида — (от греч. pyramis, род. п. pyramidos), многогранник,
основание которого многоугольник, а остальные грани треугольники, имеющие
общую вершину. По числу углов основания различают пирамиды треугольные,
четырехугольные и т. д.

Общая вершина боковых граней называется вершиной пирамиды. Высотой
пирамиды называется перпендикуляр, опущенный из вершины пирамиды на
плоскость основания.

– многогранник, основание которого – многоугольник, а остальные грани – треугольники, имеющие общую вершину. Пирамида является частным случаем конуса .

Пирамида называется правильной, если её основанием является правильный многоугольник, а вершина проецируется в центр основани

Все грани пирамиды треугольники

Если все боковые ребра равны, то:

  • около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
  • боковые ребра образуют с плоскостью основания равные углы.
  • также верно и обратное, то есть если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом, то:

  • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
  • высоты боковых граней равны;
  • площадь боковой поверхности равна половине произведения периметра
    • Объём пирамиды может быть вычислен по формуле:

    Все грани пирамиды треугольникигде Все грани пирамиды треугольники— площадь основания и Все грани пирамиды треугольники— высота;

    • Боковая поверхность — это сумма площадей боковых граней:

    Все грани пирамиды треугольники

    • Полная поверхность — это сумма площади боковой поверхности и площади основания:

    Все грани пирамиды треугольники

    • Для нахождения боковой поверхности в правильной пирамиде можно использовать формулы:

    Все грани пирамиды треугольникигде Все грани пирамиды треугольники— апофема , Все грани пирамиды треугольники— периметр основания, Все грани пирамиды треугольники— число сторон основания, Все грани пирамиды треугольники— боковое ребро, Все грани пирамиды треугольники— плоский угол при вершине пирамиды.

    Видео:Треугольная пирамида. Проекции точек на гранях. Сечение. Урок23.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать

    Треугольная пирамида. Проекции точек на гранях. Сечение. Урок23.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)

    Особые случаи пирамиды

    Правильная пирамида

    Пирамида называется правильной, если основанием её является правильный многоугольник , а вершина проецируется в центр основания. Тогда она обладает такими свойствами:

    • боковые ребра правильной пирамиды равны;
    • в правильной пирамиде все боковые грани — равные равнобедренные треугольники;
    • в любую правильную пирамиду можно как вписать, так и описать около неё сферу;
    • если центры вписанной и описанной сферы совпадают, то сумма плоских углов при вершине пирамиды равна Все грани пирамиды треугольники, а каждый из них соответственно Все грани пирамиды треугольники, где n — количество сторон многоугольника основания [6] ;
    • площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

    Прямоугольная пирамида

    Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.

    Усечённая пирамида

    Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.

    📸 Видео

    10 класс, 32 урок, ПирамидаСкачать

    10 класс, 32 урок, Пирамида

    №243. Основанием пирамиды DABC является треугольник ABC, у которого АВ = АС= 13 см, ВС=10 см; реброСкачать

    №243. Основанием пирамиды DABC является треугольник ABC, у которого АВ = АС= 13 см, ВС=10 см; ребро

    Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

    Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

    Построение линии пересечения поверхности пирамиды с проецирующей плоскостьюСкачать

    Построение линии пересечения поверхности пирамиды с проецирующей плоскостью

    Пирамида. 11 класс.Скачать

    Пирамида. 11 класс.

    Найти площадь боковой поверхности правильной треугольной пирамидыСкачать

    Найти площадь боковой поверхности правильной треугольной пирамиды

    Правильная треугольная пирамида.Скачать

    Правильная треугольная пирамида.

    ВСЕ О ПИРАМИДАХ! ЧАСТЬ II #shorts #егэ #огэ #математика #геометрия #пирамида #профильныйегэСкачать

    ВСЕ О ПИРАМИДАХ! ЧАСТЬ II #shorts #егэ #огэ #математика #геометрия #пирамида #профильныйегэ

    Крутейшее свойство правильной треугольной пирамиды! #егэ2023 #математикапрофиль2023 #школа #егэ #fypСкачать

    Крутейшее свойство правильной треугольной пирамиды! #егэ2023 #математикапрофиль2023 #школа #егэ #fyp

    11 класс. Геометрия. Объём пирамиды. 28.04.2020.Скачать

    11 класс. Геометрия. Объём пирамиды. 28.04.2020.

    Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

    Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

    ВСЕ О ПИРАМИДАХ! ЧАСТЬ I #shorts #егэ #огэ #математика #геометрия #пирамидаСкачать

    ВСЕ О ПИРАМИДАХ! ЧАСТЬ I #shorts #егэ #огэ #математика #геометрия #пирамида

    Как Собрать Пираминкс | Самый простой способ 2023Скачать

    Как Собрать Пираминкс | Самый простой способ 2023

    Развертка пирамидыСкачать

    Развертка пирамиды
Поделиться или сохранить к себе: