Все формулы по окружности огэ

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Все формулы по окружности огэ

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Все формулы по окружности огэ

Видео:Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023Скачать

Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:Всё об окружностях для ОГЭ🔥🔥🔥Скачать

Всё об окружностях для ОГЭ🔥🔥🔥

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:Урок 7. Окружность, круг и их элементы. ОГЭ. Вебинар |МатематикаСкачать

Урок 7. Окружность, круг и их элементы. ОГЭ. Вебинар |Математика

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:Без этих формул ты не сдашь ОГЭ! / Самые важные формулы по геометрииСкачать

Без этих формул ты не сдашь ОГЭ! / Самые важные формулы по геометрии

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:📌 Все темы и формулы для ОГЭ по ссылке в комментах 😉 #математика #огэ #огэматематикаСкачать

📌 Все темы и формулы для ОГЭ по ссылке в комментах 😉 #математика #огэ #огэматематика

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:Вспоминаем все формулы ОГЭ по физике | Физика ОГЭ 2023 | УмскулСкачать

Вспоминаем все формулы ОГЭ по физике | Физика ОГЭ 2023 | Умскул

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Видео:ОГЭ-2022. НЕОБХОДИМЫЕ ФОРМУЛЫ. ВОЛШЕБНЫЙ БЛОКНОТ.Скачать

ОГЭ-2022. НЕОБХОДИМЫЕ ФОРМУЛЫ. ВОЛШЕБНЫЙ БЛОКНОТ.

Необходимый теоретический материал для успешной сдачи ОГЭ-9 по математике для учеников разной подготовленности

Класс: 9

Ключевые слова: математика , ОГЭ

1. Углы

Все формулы по окружности огэ

Вертикальные углы равны (на рис. 1 и 3; 6 и 8 и др.).

Внутренние накрест лежащие углы при параллельных прямых и секущей равны. (на рис. 4 и 6; 1 и 7).

Сумма внутренних односторонних углов при параллельных прямых и секущей равна 180˚ (на рис. 4 и 7; 1 и 6).

Соответственные углы при параллельных прямых и секущей равны. (на рис. 3 и 7; 1 и 5 и др.).

Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая перпендикулярна третьей прямой.

2. Медиана, биссектриса, высота

Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.

Высота треугольника – перпендикуляр опущенный из вершины угла на противоположную сторону.

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

В любом треугольники все биссектрисы пересекаются в одной точке, все медианы пересекаются в одной точке, все медианы пересекаются в одной точке.

3. Треугольник

Сумма углов в любом треугольнике 180˚.

Средняя линия треугольника – прямая проходящая через середины двух сторон. Средняя линия параллельна одной из сторон и равна половине этой стороны.

Виды треугольников: тупоугольный (один угол тупой), прямоугольный (один угол прямой 90˚), остроугольный (все углы острые, меньше 90˚).

Все формулы по окружности огэ

Равнобедренный треугольник — треугольник, у которого равны две стороны.

Свойства равнобедренного треугольника:

  • в равнобедренном треугольнике углы при основании равны;
  • в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой;

Равносторонний треугольник — треугольник, у которого все стороны равны. (все углы по 60 градусов)

Всякий равносторонний треугольник является равнобедренным, но не всякий равнобедренный — равносторонним.

Три признака равенства треугольников

I признак по двум сторонам и углу между ними

II признак (по стороне и прилежащим углам)

III признак (по трем сторонам)

Признаки подобия треугольников

I признак по двум равным углам

II признак по двум пропорциональным сторонам и углу между ними

III признак по трем пропорциональным сторонам

Площади подобных фигур относятся как коэффициент подобия в квадрате.

Объемы подобных фигур относятся как коэффициент подобия в кубе.

Треугольник называется прямоугольным, если один из его углов прямой.

Стороны, прилежащие к прямому углу называются катетами, а сторона, лежащая против прямого угла, – гипотенузой. (самая большая сторона это гипотенуза, две др катеты).

Свойства прямоугольного треугольника

Сумма острых углов прямоугольного треугольника равна 90 градусов.

Катет, лежащий против угла в 30˚, равен половине гипотенузы.

Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы.

Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, является радиусом описанной около этого треугольника окружности.

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: a² + b² = c².

Пифагоровы тройки:

Признаки равенства прямоугольных треугольников

  • По двум катетам.
  • По гипотенузе и катету.
  • По катету и прилежащему острому углу.
  • По катету и противолежащему острому углу.
  • По гипотенузе и острому углу.

Признаки подобия прямоугольных треугольников:

  • По острому углу.
  • По пропорциональности двух катетов.
  • По пропорциональности катета и гипотенузы.

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

Высота, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника. Каждый из этих треугольников подобен исходному.

Высота прямоугольного треугольника: h=ab/c или h =Все формулы по окружности огэ (где АВ гипотенуза, СЕ высота опущенная на гипотенузу).

В прямоугольном треугольнике медиана, проведённая из вершины прямого угла, равна половине гипотенузы: m=c/2 (R=​с/2=m​c).

3. Четырехугольники

Сумма углов в любом четырехугольнике 360˚.

Параллелограмм

Все формулы по окружности огэ

Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны.

У параллелограмма противолежащие стороны равны и противолежащие углы равны.

Сумма любых двух соседних углов параллелограмма равна 180°.

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

Каждая диагональ делит параллелограмм на два равных треугольника.

Две диагонали параллелограмма делят его на четыре равновеликих треугольника.

Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

Все формулы по окружности огэ

Ромбом называется параллелограмм, у которого все стороны равны.

Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.

Прямоугольник

Прямоугольником называется параллелограмм, у которого все углы прямые.

Диагонали прямоугольника равны и точкой пересечения делятся на четыре равных отрезка.

Квадрат.

Квадрат – это прямоугольник, у которого все стороны равны.

Диагонали квадрата равны и перпендикулярны.

Сторона и диагональ квадрата связаны соотношениями: Все формулы по окружности огэ.

Трапеция

Все формулы по окружности огэ

Трапецией называется четырёхугольник у которого только две противолежащие стороны параллельны.

Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.

Средняя линия трапеции параллельна её основаниям и равна их полусумме.

Равнобокой называется трапеция, у которой боковые стороны равны.

У равнобокой трапеции: диагонали равны; углы при основании равны; сумма противолежащих углов равна 180.

Стороны и диагональ равнобокой трапеции связаны соотношением: d² = ab+c².

Трапеция называется прямоугольной, если одна из её боковых сторон перпендикулярна основаниям.

4. Окружность

Все формулы по окружности огэ

Отрезок, соединяющий центр окружности с любой точкой окружности называется радиусом (r) окружности.

Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, называется диаметром окружности.

Прямая, имеющая с окружностью одну общую точку, называется касательной. Касательная и радиус проведенный в точку касания пересекаются под прямым углом.

Прямая, имеющая с окружностью две общие точки, называется секущей.

Центральный угол окружности – это угол, вершина которого лежит в центре окружности. Центральный угол равен дуге на которую он опирается.

Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают ее. Вписанный угол равен половине дуги на которую опирается.

Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.

Вписанный угол, опирающийся на диаметр равен 90˚.

Все вписанные углы, опирающиеся на одну и туже дугу равны.

Теорема косинусов:

Теорема синусов:

Все формулы по окружности огэ

5. Формулы площадей

Видео:📌 ВСЕ темы и формулы для ОГЭ по ссылке в комментариях 😉 #математика #огэ #огэматематика #данирСкачать

📌 ВСЕ темы и формулы для ОГЭ по ссылке в комментариях 😉 #математика #огэ #огэматематика #данир

Площадь круга и его частей. Длина окружности и ее дуг

Все формулы по окружности огэОсновные определения и свойства. Число π
Все формулы по окружности огэФормулы для площади круга и его частей
Все формулы по окружности огэФормулы для длины окружности и ее дуг
Все формулы по окружности огэПлощадь круга
Все формулы по окружности огэДлина окружности
Все формулы по окружности огэДлина дуги
Все формулы по окружности огэПлощадь сектора
Все формулы по окружности огэПлощадь сегмента

Все формулы по окружности огэ

Видео:ВСЯ ГЕОМЕТРИЯ ИЗ ОГЭ ПО МАТЕМАТИКЕ 2023 ЗА 40 МИНУТСкачать

ВСЯ ГЕОМЕТРИЯ ИЗ ОГЭ ПО МАТЕМАТИКЕ 2023 ЗА 40 МИНУТ

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

ФигураРисунокОпределения и свойства
ОкружностьВсе формулы по окружности огэ
ДугаВсе формулы по окружности огэ
КругВсе формулы по окружности огэ
СекторВсе формулы по окружности огэ
СегментВсе формулы по окружности огэ
Правильный многоугольникВсе формулы по окружности огэ
Все формулы по окружности огэ
Окружность
Все формулы по окружности огэ

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

ДугаВсе формулы по окружности огэ

Часть окружности, расположенная между двумя точками окружности

КругВсе формулы по окружности огэ

Конечная часть плоскости, ограниченная окружностью

СекторВсе формулы по окружности огэ

Часть круга, ограниченная двумя радиусами

СегментВсе формулы по окружности огэ

Часть круга, ограниченная хордой

Правильный многоугольникВсе формулы по окружности огэ

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Все формулы по окружности огэ

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Все формулы по окружности огэ

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Видео:Вся геометрия 8 класса с нуля для ОГЭ по математике 2024Скачать

Вся геометрия 8 класса с нуля для ОГЭ по математике 2024

Формулы для площади круга и его частей

Все формулы по окружности огэ,

где R – радиус круга, D – диаметр круга

Все формулы по окружности огэ,

если величина угла α выражена в радианах

Все формулы по окружности огэ,

если величина угла α выражена в градусах

Все формулы по окружности огэ,

если величина угла α выражена в радианах

Все формулы по окружности огэ,

если величина угла α выражена в градусах

Числовая характеристикаРисунокФормула
Площадь кругаВсе формулы по окружности огэ
Площадь сектораВсе формулы по окружности огэ
Площадь сегментаВсе формулы по окружности огэ
Площадь круга
Все формулы по окружности огэ

Все формулы по окружности огэ,

где R – радиус круга, D – диаметр круга

Площадь сектораВсе формулы по окружности огэ

Все формулы по окружности огэ,

если величина угла α выражена в радианах

Все формулы по окружности огэ,

если величина угла α выражена в градусах

Площадь сегментаВсе формулы по окружности огэ

Все формулы по окружности огэ,

если величина угла α выражена в радианах

Все формулы по окружности огэ,

если величина угла α выражена в градусах

Видео:🔴 ЕГЭ-2024 по физике. Движение зарядов в магнитном полеСкачать

🔴 ЕГЭ-2024 по физике. Движение зарядов в магнитном поле

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

Все формулы по окружности огэ,

если величина угла α выражена в градусах

Числовая характеристикаРисунокФормула
Длина окружностиВсе формулы по окружности огэ
Длина дугиВсе формулы по окружности огэ
Длина окружности
Все формулы по окружности огэ

где R – радиус круга, D – диаметр круга

Длина дугиВсе формулы по окружности огэ

если величина угла α выражена в радианах

Все формулы по окружности огэ,

если величина угла α выражена в градусах

Видео:Хитрости в решении геометрических задач в ОГЭ по математике | Математика TutorOnlineСкачать

Хитрости в решении геометрических задач в ОГЭ по математике | Математика TutorOnline

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Все формулы по окружности огэ

Все формулы по окружности огэ

Все формулы по окружности огэ

Все формулы по окружности огэ

Все формулы по окружности огэ

Все формулы по окружности огэ

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Видео:Как решать задания на окружность ОГЭ 2021? / Разбор всех видов окружностей на ОГЭ по математикеСкачать

Как решать задания на окружность ОГЭ 2021? / Разбор всех видов окружностей на ОГЭ по математике

Длина окружности

Все формулы по окружности огэ

Все формулы по окружности огэ

Все формулы по окружности огэ

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

Все формулы по окружности огэ

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Видео:ВСЕ формулы объемов фигур 😉 #математика #огэ #огэматематика #данирСкачать

ВСЕ формулы объемов фигур 😉 #математика #огэ #огэматематика #данир

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

Все формулы по окружности огэ

В случае, когда величина α выражена в градусах, справедлива пропорция

Все формулы по окружности огэ

из которой вытекает равенство:

Все формулы по окружности огэ

В случае, когда величина α выражена в радианах, справедлива пропорция

Все формулы по окружности огэ

из которой вытекает равенство:

Все формулы по окружности огэ

Видео:📌 ВСЕ темы и формулы для ОГЭ в комментариях 😉 #математика #огэ #огэматематика #данирСкачать

📌 ВСЕ темы и формулы для ОГЭ в комментариях 😉 #математика #огэ #огэматематика #данир

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

Все формулы по окружности огэ

В случае, когда величина α выражена в градусах, справедлива пропорция

Все формулы по окружности огэ

из которой вытекает равенство:

Все формулы по окружности огэ

В случае, когда величина α выражена в радианах, справедлива пропорция

Все формулы по окружности огэ

из которой вытекает равенство:

Все формулы по окружности огэ

Видео:Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой РепетиторСкачать

Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой Репетитор

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Все формулы по окружности огэ

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

Все формулы по окружности огэ

Все формулы по окружности огэ

Все формулы по окружности огэ

В случае, когда величина α выражена в в радианах, получаем

🎥 Видео

Задание 18 все типы | МАТЕМАТИКА ОГЭ 2023Скачать

Задание 18 все типы | МАТЕМАТИКА ОГЭ 2023

ВСЯ ГЕОМЕТРИЯ НА ОГЭ ЗА 3 ЧАСА | Математика ОГЭ 2023 | УмскулСкачать

ВСЯ ГЕОМЕТРИЯ НА ОГЭ ЗА 3 ЧАСА | Математика ОГЭ 2023 | Умскул
Поделиться или сохранить к себе: