Конус — это объемное тело, которое получается при вращении прямоугольного треугольника вокруг одного из его катетов.
Возьмем прямоугольный треугольник АВС. Будем вращать этот треугольник вокруг катета АС.
Прямая АС — ось косинуса.
Отрезок АС — высота конуса.
Основание конуса — круг, образованный при вращении катета ВС.
Коническая поверхность (или боковая поверхность конуса) — поверхность, образованная при вращении гипотенузы АВ и состоящая из отрезков с общим концом А.
Образующие конуса — отрезки, из которых составлена боковая поверхность конуса (на рисунке выше указаны образующие АВ, АВ1 и АВ2).
- Определение
- Объем конуса
- Доказательство
- Площадь боковой поверхности конуса
- Вращение прямоугольного треугольника вокруг катета
- Конус получен вращением прямоугольного треугольника вокруг одного из катетов. боковая поверхнос ть -тело, ограниченное конической поверхностью и кругом. — презентация
- Похожие презентации
- Презентация на тему: » Конус получен вращением прямоугольного треугольника вокруг одного из катетов. боковая поверхнос ть -тело, ограниченное конической поверхностью и кругом.» — Транскрипт:
- 🎥 Видео
Определение
| Конус — это тело, ограниченное кругом и конической поверхностью. | 
Объем конуса
| Объем конуса равен одной трети произведения площади основания на высоту. | 
Доказательство
Дано: конус с площадью основания S, высотой h и объемом V.
Доказать: V = 
Доказательство:
Воспользуемся принципом Кавальери. Рассмотрим конус и пирамиду с площадями оснований S и высотами ЕН = h и РО = h соответственно, «стоящие» на одной плоскости 
Проведем секущую плоскость 












Площадь сечения пирамиды равна 
Следовательно, площадь сечения конуса равна площади сечения пирамиды. Поэтому и его объем равен объему пирамиды, т.е. V = 
Площадь боковой поверхности конуса
Рассмотрим конус с радиусом основания 

Представим, что его боковую поверхность разрезали по одной из образующих и развернули так, что получился круговой сектор.
Радиус этого сектора равен образующей конуса, т.е. равен 



Длина дуги окружности с градусной мерой 




| Площадь боковой поверхности конуса равна площади ее развертки, т.е.  . | 
Поделись с друзьями в социальных сетях:
Видео:№565. Прямоугольный треугольник с катетами 6 см и 8 см вращается вокруг меньшего катета.Скачать

Вращение прямоугольного треугольника вокруг катета
Так как все образующие конуса равны, то его осевым сечением является равнобедренный треугольник, боковыми сторонами которого являются образующие конуса, а основанием — диаметр конуса. При этом все осевые сечения конуса — равные равнобедренные треугольники . На рисунке 168 осевым сечением конуса является треугольник ABP ( АР = ВР ). Угол АPВ называют углом при вершине осевого сечения конуса .
Конус, в осевом сечении которого правильный треугольник, называется равносторонним конусом.
Если секущая плоскость проходит через вершину конуса, пересекает конус, но не проходит через его ось, то в сечении конуса также получается равнобедренный треугольник (см. рис. 168: △ DCP ).
Так как конус — тело вращения, то любое сечение конуса плоскостью, перпендикулярной его оси (т. е. параллельной основанию конуса), есть круг, а сечение боковой поверхности конуса такой плоскостью — окружность этого круга; центром круга (окружности) является точка пересечения оси конуса и секущей плоскости (рис. 169).
Если секущая плоскость не параллельна плоскости основания конуса и не пересекает основание, то сечением боковой поверхности конуса такой плоскостью является эллипс (рис. 170). Поэтому эллипс называют коническим сечением .
 
О конических сечениях можно прочитать в очерках «Элементарная геометрия», «Проективная геометрия» в конце этой книги. 
 ЗАДАЧА (3.047). Высота конуса равна радиусу R его основания. Через вершину конуса проведена плоскость, отсекающая от окружности основания дугу: а) в 60 ° ; б) в 90 ° . Найти площадь сечения.
Решени е. Рассмотрим случай а). Пусть плоскость α пересекает поверхность конуса с вершиной Р по образующим РА и РВ (рис. 172); △ АВР — искомое сечение. Найдём площадь этого сечения.
Хорда АВ окружности основания стягивает дугу в 60 ° , значит, △ AOB — правильный и АВ = R .
Если точка С — середина стороны АB, то отрезок PC — высота треугольника АВР. Поэтому S △ ABP = 



Тогда S △ ABP = 

Ответ: а) 
18.3. Касательная плоскость к конусу
Определение. Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса перпендикулярно осевому сечению, проведённому через эту образующую.
Говорят, что плоскость α касается конуса по образующей РА (рис. 173): каждая точка образующей РА является точкой касания плоскости α и данного конуса.
 
Через любую точку боковой поверхности конуса проходит только одна его образующая. Через эту образующую можно провести только одно осевое сечение и только одну плоскость, перпендикулярную плоскости этого осевого сечения. Следовательно, через каждую точку боковой поверхности конуса можно провести лишь одну плоскость, касательную к данному конусу в этой точке.
18.4. Изображение конуса
Для изображения конуса достаточно построить: 1) эллипс, изображающий окружность основания конуса (рис. 174); 2) центр О этого эллипса; 3) отрезок ОР, изображающий высоту конуса; 4) касательные прямые РА и PB из точки Р к эллипсу (их проводят с помощью линейки на глаз).
Для достижения наглядности изображения невидимые линии изображают штрихами.
Необходимо заметить, что отрезок АВ, соединяющий точки касания образующих и окружности основания конуса, ни в коем случае не является диаметром основания конуса, т. е. этот отрезок не содержит центра О эллипса. Следовательно, △ АBP — не осевое сечение конуса. Осевым сечением конуса является △ ACP, где отрезок AC проходит через точку О, но образующая PC не является касательной к окружности основания.
18.5. Развёртка и площадь поверхности конуса
Пусть l — длина образующей, R — радиус основания конуса с вершиной Р .
Поверхность конуса состоит из боковой поверхности конуса и его основания. Если эту поверхность разрезать по одной из образующих, например по образующей PA (рис. 175), и по окружности основания, затем боковую поверхность конуса развернуть на плоскости (рис. 176, a ), то получим развёртку поверхности конуса (рис. 176, б ), состоящую из: а) кругового сектора, радиус которого равен образующей l конуса, а длина дуги сектора равна длине окружности основания конуса; б) круга, радиус которого равен радиусу R основания конуса. Угол сектора развёртки боковой поверхности конуса называют углом развёртки конуса ; его численная величина равна отношению длины окружности основания конуса к его образующей (радиусу сектора развёртки):
α = 
За площадь боковой поверхности конуса принимается площадь её развёртки. Выразим площадь боковой поверхности конуса через длину l его образующей и радиус R основания.
Площадь боковой поверхности — площадь кругового сектора радиуса длины l — вычисляется по формуле
S бок = 
где α — величина угла (в радианах) сектора — развёртки. Учитывая, что α = 
Таким образом, доказана следующая теорема.
 
Теорема 27. Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую. ▼
Площадь полной поверхности конуса равна сумме площадей его боковой поверхности и основания, т. е.
S кон = π Rl + π R 2 . (3)
 
Следствие. Пусть конус образован вращением пря м оугольного треугольника ABC вокруг катета АС (рис. 177). Тогда S бок = π • BC • АВ. Если D — середина отрезка АВ, то AB = 2 AD, поэтому
S бок = 2 π ВС • AD. (4)
Проведём DE ⟂ АB ( E ∈ l = AС ) . Из подобия прямоугольных треугольников ADE и ACB (у них общий угол А ) имеем
 

Тогда соотношение (4) принимает вид
S бок = (2 π • DE ) • AC, (6)
т. е. площадь боковой поверхности конуса равна произведению высоты конуса на длину окружности, радиус которой равен длине серединного перпендикуляра, проведённого из точки на оси конуса к его образующей.
Это следствие будет использовано в п. 19.7.
18.6. Свойства параллельных сечений конуса
 
Теоремa 28. Если конус пересечён плоскостью, параллельной основанию, то: 1) все образующие и высота конуса делятся этой плоскостью на пропорциональные части; 2) в сечении получается круг; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.
Доказательств о. 1) Пусть конус с вершиной Р и основанием F пересечён плоскостью α , параллельной плоскости β основания конуса и расположенной между Р и β (рис. 178).
Проведём высоту РО конуса, где точка О — центр круга F. Так как РО ⟂ β , α || β , то α ⟂ РО. Значит, в сечении конуса плоскостью α получается круг с центром в точке O 1 = α ∩ РО. Обозначим этот круг F 1 .
Рассмотрим гомотетию 
Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия 

 

где k — коэффициент гомотетии 
А поскольку гомотетия является подобием, то круг F 1 , являющийся параллельным сечением конуса, подобен его основанию.
Вследствие того что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии и k = PO 1 : Р О , где РO 1 и PO — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то
S сечен : S основ = k 2 = 
18.7. Вписанные в конус и описанные около конуса пирамиды
Определение. Пирамида называется вписанной в конус, если у них вершина общая, а основание пирамиды вписано в основание конуса. В этом случае конус называется описанным около пирамиды.
Для построения изображения правильной пирамиды, вписанной в конус:
— строят изображение основания пирамиды — правильного многоугольника, вписанного в основание конуса;
— соединяют отрезками прямых вершину конуса с вершинами построенного многоугольника;
— выделяют видимые и невидимые (штрихами) линии изображаемых фигур.
На рисунках 179—182 изображена вписанная в конус пирамида, в основаниях которой лежит:
— прямоугольный треугольник (см. рис. 179);
Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Конус получен вращением прямоугольного треугольника вокруг одного из катетов. боковая поверхнос ть -тело, ограниченное конической поверхностью и кругом. — презентация
Презентация была опубликована 9 лет назад пользователемart.ioso.ru
Похожие презентации
Видео:Геометрия 11 класс (Урок№7 - Конус.)Скачать

Презентация на тему: » Конус получен вращением прямоугольного треугольника вокруг одного из катетов. боковая поверхнос ть -тело, ограниченное конической поверхностью и кругом.» — Транскрипт:
2 Конус получен вращением прямоугольного треугольника вокруг одного из катетов. боковая поверхнос ть -тело, ограниченное конической поверхностью и кругом. Коническая поверхность – поверхность, образованная отрезками, соединяющими т. P с каждой точкой окружности. Образующи е основание конуса ось конуса вершина конуса — это отрезки, которыми образована коническая поверхность — это коническая поверхность конуса — основанием является круг. является его высотой К О Н У СК О Н У С
3 За площадь боковой поверхности конуса принимается площадь её развертки. S бок = (πl 2 /360)*α S бок = π*r*l S кон =πr(l+ r) Площадь боковой поверхности конуса равна произведению половины длины окружности основания на высоту. полной поверхности Площадью полной поверхности конуса называется сумма площадей боковой поверхности и основания: S кон =πr(l+r)
4 Сечение плоскостью, параллельной оси Сечение плоскостью, параллельной основанию Сечение – круг с центром в т. О 1 Осевое сечение А B P APB AP=PB AB=d (Плоскость сечения проходит через ось конуса)
5 Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую. S бок = π(r+r 1 )l Может быть получен вращением прямоугольной трапеции вокруг её боковой стороны, перпендикулярной к основаниям.
6 O1O1 M1M1 A A1A1 M r O L L1L1 α β образующие Образование цилиндрической поверхности. Рассмотрим две параллельные плоскости α и β и окр. L с центром О радиуса r, расположенную в пл. α. Через каждую точку окружности L проведём прямую, перпендикулярную к пл. α. Отрезки этих прямых, заключённые между плоскостями, образуют цилиндрическую поверхность. Отрезки АА 1, ММ 1 называются образующими цилиндрической поверхности. Тело, ограниченное цилиндрической поверхностью и двумя кругами с границами L и L 1, называется ЦИЛИНДРОМ. боковой поверхностью цилиндра основаниями цилиндра образующими цилиндра осью цилиндра Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги — основаниями цилиндра. Образующими цилиндрической поверхности называются образующими цилиндра, прямая ОО 1 – осью цилиндра. Цилиндр может быть получен вращением прямоугольника вокруг одной из его сторон.
7 За площадь боковой поверхности цилиндра принимают площадь её развертки Площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту цилиндра. Площадью полной поверхности цилиндра называется сумма площадей боковой поверхности и двух оснований. П Л О Щ А Д Ь П О В Е Р Х Н О С Т И Ц И Л И Н Д Р А S бок =2πrh Sцил=2 πr(r+h)
8 С Е Ч Е Н И Я Ц И Л И Н Д Р А Осевое Секущая плоскость проходит через ось цилиндра, в сечении прямоугольник Сечение плоскостью, перпендикулярной к оси, в сечении круг.
9 ПРИМЕРЫ ЗАДАЧ С РЕШЕНИЯМИ ПО ТЕМЕ « СЕЧЕНИЕ КОНУСА И ЦИЛИНДРА » Задача 1. Высота цилиндра равна 12см, а радиус основания равен 10 см. Цилиндр пересечён плоскостью, параллельной оси, так, что в сечении получился квадрат. Найти расстояние от оси цилиндра до секущей плоскости. Решение: По условию задачи r=10, а h=12. Для нахождения расстояния от оси до плоскости сечения нужно найти величину расстояния ОН. Отрезок ОН перпендикулярен к стороне квадрата АВ, которая равна12см. ОА и ОВ равны радиусу основания r=10см. Δ ОАВ равнобедренный, ОН делит сторону АВ пополам. Таким образом, задача сводится к нахождению катета в прямоугольном треугольнике ОНА, который будет равен, по теореме Пифагора, квадратному корню из ( )=8. О А В С D Н Задача 2. Площадь осевого сечения конуса равна 0,6 см 2. Высота конуса равна 1,2 см. Вычислите площадь полной поверхности конуса. Решение: Формула нахождения площади полной поверхности конуса равна Sкон=πr(l+r) (1). В осевом сечении конуса получается треугольник, у которого основание равно 2r, высота h=1,2см и площадь S=0,6 см 2. Из формулы площади треугольника S=1/2*2r*h (2r-основание треугольника) находим r=0,5. Зная катет треугольника АВО, равный r, и гипотенузу, равную h, можем найти второй катет, равный l. По теореме Пифагора он равен корню квадратному из (1,2 2 +0,5 2 )=1,3. Теперь, зная все составляющие величины формулы (1), подставив, получаем S= π*05*(1,3+0,5)=0,9 π. l А В Оr
10 А эти задачки попробуй решить сам Задача 3. Высота цилиндра на 12см больше его радиуса, а площадь полной поверхности равна 288 π см 2. Найдите радиус основания и высоту цилиндра. Возможно, этот чертёж поможет тебе при решении. Задача 4. Осевое сечение конуса — правильный треугольник со стороной 2r. Найдите площадь сечения, проведённого через две образующих конуса, угол между которыми равен: а) 30 о, б) 45 о, в) 60 о. Посмотри на рисунок, и он поможет тебе решить задачу. l А В Оr 2r2r С И последняя Задача 4. Найдите образующую усечённого конуса, если радиусы оснований равны 3см и 6 см, а высота равна 4см. Чертёж усечённого конуса, приведённый здесь, наведёт тебя на правильные мысли. Удачи!
🎥 Видео
Лекция 1. Точка на прямой. Метод прямоугольного треугольникаСкачать

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронталиСкачать

Свойства прямоугольного треугольника. 7 класс.Скачать

Построение натуральной величины треугольника методом вращенияСкачать

Нахождение катета прямоугольного треугольникаСкачать

Конус. Урок 18. Геометрия 9 классСкачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Геометрия 9 класс (Урок№34 - Тела и поверхности вращения.)Скачать

Конус. Урок 8. Геометрия 11 классСкачать

Способ вращения. Определение истинной величины отрезка.Скачать

№273. Сумма гипотенузы СЕ и катета CD прямоугольного треугольника CDE равна 31 см, а ихСкачать

Задача №1 Определение натуральной величины отрезка прямой (АВ) методом прямоугольного треугольникаСкачать

2 задание ЕГЭ профиль стереометрияСкачать

Конус. 11 класс.Скачать

Нахождение натуральной величины отрезка методом прямоугольного треугольникаСкачать

Катеты прямоугольного треугольника равны 3 и 4. Найдите высоту, проведённую к гипотенузеСкачать


















