Вращение окружности вокруг оси ох

Вращательное движение тела в физике — виды, формулы и определения с примерами

Содержание:

Вращательное движение тела:

До сих пор мы изучали прямолинейное движение тел, хотя в природе и технике часто совершаются более сложные движения тел — криволинейные, когда траекторией тела является кривая линия. Любую кривую линию всегда можно представить как совокупность дуг окружностей разных радиусов (рис. 18). Вращение окружности вокруг оси ох

Поэтому, изучив движение материальной точки по окружности, сможем в дальнейшем изучать и любые другие криволинейные движения. Кроме того, из всех возможных криволинейных движений в технике широко применяется вращательное движение деталей машин и механизмов, например вращение шестерён машин и станков, деталей, обрабатываемых на токарных станках, валов двигателей, колес машин, фрез, свёрл и т. п. Любая точка этих деталей движется по окружности. Эти две особенности и обусловили обязательное изучение движения по окружности, а именно — равномерное движение тела по окружности.

Движение материальной точки по круговой траектории с постоянной по значению, но изменяющейся по направлению скоростью, называют равномерным движением по окружности.

Предположим, что тело равномерно движется по окружности из точки А в точку В (рис. 19). Тогда пройденный им путь — это длина дуги Вращение окружности вокруг оси ох

Вращение окружности вокруг оси ох

где Вращение окружности вокруг оси ох— скорость движения тела по окружности; Вращение окружности вокруг оси ох— пройденный телом путь (длина дуги); Вращение окружности вокруг оси ох— время движения тела.

Направление скорости проще всего определить на опыте.

Опыт:

К вращающемуся точильному кругу, прикоснемся железным стержнем. Увидим, что искры из-под стержня летят по касательной к окружности этого круга (рис. 20).

Вращение окружности вокруг оси ох

Результат будет таким же в любой точке этого круга. Но каждая искра — это раскалённая частичка, оторвавшаяся от круга и летящая с такой же скоростью, какую она имела в последний момент движения вместе с кругом.

Вращение окружности вокруг оси ох

Итак, скорость материальной точки при движении по окружности направлена по касательной к ней в любой точке круга (рис. 21), а с учётом представления кривой на рисунке 18 этот вывод можно распространить на любые криволинейные движения (рис. 22).

Вращение окружности вокруг оси ох

Опыт:

Закрепим на горизонтальной оси О фанерный диск (рис. 23), на котором проведен радиус ОА. Напротив точки А поставим указатель В и будем медленно и равномерно вращать диск. Увидим, что точка А с каждым оборотом диска снова появляется напротив указателя В, т. е. совершает движение, повторяющееся через определенный интервал времени.

Движения, при которых определенные положения материальной точки повторяются через одинаковые интервалы времени, называют периодическими движениями.

Равномерное движение по окружности — это периодическое движение. Периодическое движение характеризуют такими величинами, как период обращения и частота обращения.

Период обращения — это интервал времени, в течение которого материальная точка совершает один оборот при равномерном движении по окружности.

Обозначается период обращения большой латинской буквой Т.

Если за время Вращение окружности вокруг оси охматериальная точка при равномерном движении по окружности совершает N оборотов, то период обращения определяется формулой:

Вращение окружности вокруг оси ох

Единицей периода обращения в СИ является одна секунда (1 с).

Если период обращения равняется 1 с, то материальная точка при равномерном движении по окружности осуществляет один оборот за 1 с.

Частота обращения определяется числом оборотов, которое материальная точка совершает за единицу времени при равномерном движении по окружности

Обозначается частота обращения малой латинской буквой Вращение окружности вокруг оси ох.

* В научной и учебной литературе частоту обращения еще обозначают малой греческой буквой Вращение окружности вокруг оси ох(ню).

Если за время Вращение окружности вокруг оси охматериальная точка совершила N оборотов, то, чтобы определить частоту обращения Вращение окружности вокруг оси ох, нужно N поделить на Вращение окружности вокруг оси ох, т. е.:
Вращение окружности вокруг оси оха так как Вращение окружности вокруг оси ох= ТN , то Вращение окружности вокруг оси ох.
Из последней формулы видно, что частота обращения и период обращения связаны обратно пропорциональной зависимостью, а для определения единицы частоты обращения нужно единицу разделить на единицу периода обращения, т. е. на секунду.

Единицей частоты обращения в СИ является единица, разделённая на секунду Вращение окружности вокруг оси ох. Вращение окружности вокруг оси охэто частота обращения, при котором за 1 с материальная точка совершает 1 полный оборот, двигаясь равномерно по окружности. В технике такую единицу иногда называют одним оборотом в секунду Вращение окружности вокруг оси ох, часто применяют также единицу один оборот в минуту Вращение окружности вокруг оси ох.

Видео:Интегралы №13 Объем тела вращенияСкачать

Интегралы №13 Объем тела вращения

Движение точки по окружности

Движения, происходящие в природе и технике, могут отличаться по изменению значения скоростей и по изменению направления скоростей. Так, например, при движении точки вдоль прямой линии в одном направлении направление скорости не меняется, хотя ее значение может быть различным. В этом случае движение считается неравномерным.

Но движения могут быть и криволинейными, например, точки могут двигаться по окружностям. На рисунке 18 изображена траектория движения точек нити или ленты между круглыми барабанами. Такие траектории можно представить в виде отрезков прямых линий и окружностей разных размеров. Понятно, что такие движения могут быть и равномерными, каждая точка все время будет иметь одинаковую скорость по значению, хотя направление скорости от точки к точке траектории может меняться.

Вращение окружности вокруг оси охВращение окружности вокруг оси ох

Рассмотрим движение материальной точки по окружности, когда это движение равномерно, т. е. значение скорости остается постоянным (рис. 19). Точка, двигаясь по окружности радиуса R, за определенное время Вращение окружности вокруг оси охпереходит из точки А в точку В. При этом отрезок OA поворачивается на угол Вращение окружности вокруг оси ох— угловое перемещение точки. Такое движение можно характеризовать угловой скоростью:

Вращение окружности вокруг оси ох

где Вращение окружности вокруг оси ох(греческая буква «омега») — угловая скорость; Вращение окружности вокруг оси ох(греческая буква «фи») — угловое перемещение.

Угловое перемещение определяется в радианах (рад.). 1 радиан — это такое перемещение, когда траектория движения точки — длина дуги окружности АВ — равна длине радиуса R.

Единицей угловой скорости является радиан в секунду (рад/с).

1 рад/с равен угловой скорости такого равномерного движения по окружности, при котором за 1 с осуществляется угловое перемещение 1 рад.

При определении угловой скорости слово «рад» обычно не пишут, а просто обозначают 1/с (имеется в виду рад/с).

Движение точки по окружности (и вращение твердого тела) характеризуют также такие величины, как период и частота вращения.

Период вращения (Т) — это время, на протяжении которого точка (тело) совершает один полный оборот по окружности. Период вращения:

Вращение окружности вокруг оси ох

где t — время вращения, N — количество выполненных оборотов.

Период вращения Т измеряется в секундах. Период равен 1 с, если точка (тело) осуществляет один оборот в секунду. Частота вращения (вращательная частота):

Вращение окружности вокруг оси ох

где N — количество совершенных оборотов за время t .

Частота вращения измеряется в оборотах за секунду (об/с).

Частота вращения Вращение окружности вокруг оси ох определяет количество оборотов точки (тела) вокруг центра (оси вращения) за 1 с.

Еще Архимед установил, что для всех окружностей любого радиуса отношение длины окружности к его диаметру является величиной постоянной. это число обозначили греческой буквой Вращение окружности вокруг оси ох(«пи»).

Вращение окружности вокруг оси ох

Вращение окружности вокруг оси ох

Таким образом, длина окружности Вращение окружности вокруг оси ох

За один оборот материальная точка осуществляет угловое перемещение 2 Вращение окружности вокруг оси охрад.

Движение по окружности характеризуется привычным для нас понятием скорости как пути, который проходит точка за единицу времени. В данном случае эта скорость называется линейной. Если учитывать, что за один оборот (время Т) точка проходит путь Вращение окружности вокруг оси охто линейная скорость равномерного движения точки по окружности Вращение окружности вокруг оси охили Вращение окружности вокруг оси ох

Вращение твердого тела

Твердые тела состоят из большого количества частичек. Абсолютно твердыми наукой считаются тела, расстояние между точками которых не изменяется во время явлений, которые с ними происходят. Однако следует иметь в виду, что абсолютно твердых тел в природе нет.

Как упоминалось в § 3, движения твердых тел бывают поступательные и вращательные. Твердые тела могут вращаться вокруг любых осей, в том числе и тех, которые проходят через их центры.

В случае а (рис. 20) ось вращения проходит через центр шара (например, вращаются колеса транспортных средств или Земля в своем суточном вращении вокруг оси). В случае в ось проходит через край шара. В случае в шар находится на определенном расстоянии от оси (например, Земля движется вокруг Солнца или Луна вокруг Земли). В некоторых случаях даже Землю и Луну можно считать материальными точками, а в некоторых случаях это сделать невозможно. Подумайте, в каких?

Вращение окружности вокруг оси ох

Что же является наиболее характерным для вращательного движения твердых тел? Очевидно, что при этом все точки этих тел в своем движении описывают окружности, центры которых находятся на осях вращения.

Понятно также, что разные точки тел за одно и то же время проходят по своим траекториям разные расстояния — чем дальше от оси вращения лежат точки, тем больше эти расстояния. Но за одно и то же время угловое перемещение Вращение окружности вокруг оси охвсех точек одинаково. Следовательно, и угловая скорость Вращение окружности вокруг оси охдля всех точек данного тела также будет одинаковой.

Для характеристики вращательного движения твердых тел используют такие же понятия, что и для движения точки по окружности: период вращения Т — время одного полного вращения; вращательная частота (частота вращения) Вращение окружности вокруг оси ох— количество полных вращений за единицу времени; угловая скорость со. Кроме основной единицы частоты вращения об/с, используют об/мин, об/ч и т. п.

Период вращения Земли вокруг- Солнца равен в среднем 365 суток, а период вращения Луны вокруг Земли в среднем 28 суток. Изучая физику, астрономию, вы узнаете, что небесные тела, например планеты Солнечной системы, движутся не по окружностям, а по так называемым эллипсам.

Динамика вращательного движения

При просмотре фильмов-боевиков вы могли наблюдать, что при резком вращении руля автомобиля машина опрокидывается. В цирке мотоциклисты катаются по поверхности стен.
Проведем такой опыт. Нальем воду в ведро и раскрутим его в вертикальной плоскости. При определенной скорости вращения вода не выливается из ведра.

Из приведенных выше примеров можно сделать заключение, что существует сила, которая опрокинет машину при резком повороте, удержит мотоциклиста на стене и не даст вылиться воде из ведра при вращении.
Откуда появляется эта сила? От чего зависит ее величина?
Для этого вспомним о возникновении центростремительной силы в теле при равномерном вращательном движении:

Вращение окружности вокруг оси ох

По третьему закону Ньютона:

Вращение окружности вокруг оси ох

и при вращении появляется также центробежная сила. Вращение окружности вокруг оси ох
Вот эта центробежная сила опрокинет резко разворачивающуюся машину, удержит воду в ведре при вращении и т.д.

Вращение окружности вокруг оси ох

На рисунке 4.12 показаны силы, действующие на тело, которое совершает вращательные движения по кругу радиусом Вращение окружности вокруг оси ох. В точке 1, из-за того что центробежная сила Вращение окружности вокруг оси охнаправлена противоположно силе тяжести Вращение окружности вокруг оси ох, вес тела уменьшается:

Вращение окружности вокруг оси ох

В точке 3 сила тяжести тела и центробежная сила направлены вниз, т.е. в одном направлении. В этом случае вес тела растет:

Вращение окружности вокруг оси ох

Центробежную силу нужно учитывать при вращении тела и в случаях поворота в ходе движения.
Кроме того, на поворотах дороги под воздействием центробежной силы наблюдается отклонение тела от вертикального положения. Чтобы это не приводило к авариям, велосипедисты или мотоциклисты должны двигаться с небольшим уклоном в сторону от центра вращения (рис. 4.13а).
Для уравновешивания этой силы специально для автомобилей на поворотах строят участки дороги с уклоном с одной стороны (рис. 4.13б). Для трамваев и поездов рельсы на поворотах дороги с внешней стороны круга делаются чуть выше.

Вращение окружности вокруг оси ох

Пример

При движении по кругу тело опускается вниз. При каком радиусе круга тело не упадет с точки Вращение окружности вокруг оси ох. Скорость тела в точке Вращение окружности вокруг оси охравна 30 м/с.
Дано:

Вращение окружности вокруг оси ох

Вращение окружности вокруг оси ох

Вращение окружности вокруг оси ох

Чтобы тело не упало из точки Вращение окружности вокруг оси охдолжно Вращение окружности вокруг оси охвыполняться следующее условие: Вращение окружности вокруг оси ох
Вращение окружности вокруг оси ох
Ответ: 90 м.

Кинематика вращательного движения

При криволинейном движении материальной точки ее мгновенная скорость направлена по касательной к траектории в данной точке.
Движение тела (МТ) по окружности является частным случаем криволинейного движения по траектории, лежащей в одной плоскости.

Одним из простейших и широко распространенных видов такого движения является движение по окружности с постоянной по модулю скоростью. Это такое движение, при котором тело (МТ) за любые равные промежутки времени описывает одинаковые дуги. Подчеркнем, что при подобном движении скорость точки постоянно меняет свое направление.

Для описания движения по окружности используется ряд физических величин. Рассмотрим некоторые из них.

Удобным параметром для определения положения материальной точки М, совершающей движение по окружности радиусом R с центром в начале координат, является угол поворота Вращение окружности вокруг оси ох(рис. 25)

Вращение окружности вокруг оси ох
радиус-вектора точки М. Он отсчитывается от оси Ох против хода часовой стрелки и связан с декартовыми координатами соотношениями:

Вращение окружности вокруг оси ох

По теореме Пифагора можно найти, что координаты х и у материальной точки в декартовой системе координат удовлетворяют соотношению

Вращение окружности вокруг оси ох
Скорость Вращение окружности вокруг оси охс которой материальная точка движется по окружности, называется линейной скоростью (рис. 26).

Вращение окружности вокруг оси ох

Проходимый точкой путь s (длина дуги окружности) равен, как и для всякого равномерного движения, произведению модуля скорости v и промежутка времени движения Вращение окружности вокруг оси ох

Вращение окружности вокруг оси ох
Модуль угловой скорости Вращение окружности вокруг оси ох— это отношение угла поворота Вращение окружности вокруг оси охк промежутку времени Вращение окружности вокруг оси охза который этот поворот произошел:
Вращение окружности вокруг оси ох
Угловая скорость Вращение окружности вокруг оси охсо является величиной векторной. Она направлена вдоль оси вращения материальной точки, и ее направление определяется по правилу буравчика, т. е. совпадает с направлением поступательного движения конца буравчика, рукоятка которого вращается в том же направлении, что и тело (рис. 27).

Вращение окружности вокруг оси ох

Единица угловой скорости в СИ — радиан в секунду Вращение окружности вокруг оси ох

При движении по окружности с постоянной по модулю скоростью v угловая скорость Вращение окружности вокруг оси охявляется величиной постоянной и ее модуль равен отношению угла поворота Вращение окружности вокруг оси охк промежутку времени Вращение окружности вокруг оси охза который этот поворот произошел:

Вращение окружности вокруг оси ох

Здесь n — частота вращения — физическая величина, численно равная числу оборотов N материальной точки в единицу времени:

Вращение окружности вокруг оси ох
Единица частоты вращения в СИ — секунда в минус первой степени Вращение окружности вокруг оси охВремя совершения одного оборота называется периодом вращения Т.

Вращение окружности вокруг оси ох
В СИ период измеряется в секундах (1с).

При совершении полного оборота Вращение окружности вокруг оси охпериод определяется по формуле

Вращение окружности вокруг оси ох
Модуль постоянной линейной скорости тела (МТ), движущегося по окружности, вычисляется по формуле

Вращение окружности вокруг оси ох

Проекции скорости Вращение окружности вокруг оси ох(см. рис. 25) с течением времени изменяются по закону
Вращение окружности вокруг оси ох
Модуль угловой скорости определяется соотношением

Вращение окружности вокруг оси ох
Следовательно, соотношение между модулями линейной и угловой скорости имеет вид
Вращение окружности вокруг оси ох
Поскольку Вращение окружности вокруг оси ох(докажите самостоятельно), где Вращение окружности вокруг оси ох— угол поворота радиус-вектора в момент начала движения, то кинематический закон движения МТ но окружности имеет видВращение окружности вокруг оси ох

При движении МТ по окружности с постоянной по модулю скоростью ее направление непрерывно изменяется и, следовательно, движение МТ происходит с ускорением, которое называется центростремительным Вращение окружности вокруг оси охили нормальным Вращение окружности вокруг оси охУскорение направлено по радиусу к центру окружности и характеризует быстроту изменения направления скорости Вращение окружности вокруг оси охс течением (см. рис. 26). Его модуль определяется формулой

Вращение окружности вокруг оси ох

Нормальное ускорение Вращение окружности вокруг оси охв любой момент времени перпендикулярно скорости Вращение окружности вокруг оси ох

Как и при прямолинейном равноускоренном движении, ускорение Вращение окружности вокруг оси охназываемое тангенциальным (касательным), совпадает с направлением скорости Вращение окружности вокруг оси охили направлено противоположно ей Вращение окружности вокруг оси охи поэтому изменяет только модуль скорости. Следовательно, при движении по окружности с непостоянной по модулю скоростью (например, математический маятник) или при любом криволинейном движении полное ускорение Вращение окружности вокруг оси охможно представить в виде векторной суммы нормального ускорения Вращение окружности вокруг оси охи тангенциального ускорения Вращение окружности вокруг оси охнаправленного по касательной к окружности в данной точке (рис. 28):
Вращение окружности вокруг оси ох

Вращение окружности вокруг оси ох
Полное ускорение Вращение окружности вокруг оси охвсегда направлено в сторону вогнутости траектории (см. рис. 28).

Модуль полного ускорения находится по теореме Пифагора:

Вращение окружности вокруг оси ох
где Вращение окружности вокруг оси ох— нормальное ускорение, с которым точка двигалась бы по дуге
окружности радиусом r, заменяющей траекторию в окрестности рассматриваемой точки. Этот радиус r называют радиусом кривизны траектории.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Равномерное движение материальной точки по окружности
  • Колебательное движение
  • Физический и математический маятники
  • Пружинные и математические маятники
  • Поступательное движение
  • Равномерное и неравномерное движение
  • Равномерное движение
  • Неравномерное движение

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Объем тела, образованного вращением кривой вокруг оси хСкачать

Объем тела, образованного вращением кривой вокруг оси х

4.4. Объемы и поверхности тел вращения

I. Объемы тел вращения. Предварительно изучите по учебнику Г. М. Фихтенгольца главу XII, п°п° 197, 198* Разберите подробно примеры, приведенные в п° 198.

508. Вычислить объем тела, образуемого вращением эллипса Вокруг оси Ох.

Решение. При вращении эллипса вокруг оси Ox образуется тело, называемое эллипсоидом вращении. Как известно, объем тела, образованного вращением вокруг оси Ox криволинейной трапеции, ограниченной сверху кривой у = f<x), ординатами х = а, х = Ь и осью Ох, вычисляется по формуле:

Из уравнения эллипса видно, что большая его полуось равна 2, следовательно, . Разрешив уравнение

эллипса относительно , получим Объем

эллипсоида вращения равен:

509. Найти объем тора, образованного вращением круга

Вокруг оси Ox (рис. 18). Решение. Искомый объем тора равен разности объемов, полученных от вращения верхнего и нижнего полукругов. Так как для верхнего полукруга

, а для нижнего , то

Б10. Вычислить объем прямого конуса, высота которого h и радиус основания г, рассматривая конус как тело вращения прямоугольного треугольника около одного из катетов.

Решение. Выберем систему координат так, чтобы ось Ox совпала с высотой h (рис. 19), а вершину конуса

примем за начало координат. Тогда уравнение прямой OA

Следовательно, объем конуса

запишется так: будет равен:

511. Вычислить объемы тел, образованных вращением около осей Ox и Oy сегмента AOB параболы , от

секаемого хордой AFB, проходящей через фокус параболы перпендикулярно к оси Ox (рис. 20, а, б).

Решение I. Вычислим объем тела, получаемого при вращении сегмента AOB вокруг оси Ох, пользуясь формулой:

Найдем пределы интегрирования. Прямая AB параллельна оси Oy. Ее уравнение . Для того чтобы

найти точки пересечения этой прямой с параболой, решим совместно систему уравнений:

мя я AB проходит через фокус параболы, то координаты точки F будут Следовательно,

Получим точки . Так Kaw пря

2. Вычислим объем тела, получаемого при вращении сегмента AOB вокруг оси Oy. Учитывая симметрию сегмента относительно оси Oxi найдем сначала половину искомого объема. Она равна разности объемов тел, получаемых от вращения вокруг оси Oy прямоугольника OFBD и криволинейного тоеугольника OBD. Так как объем цилиндра равен , а объем Тела, полученного от вращения криволинейного треугольника OBD вокруг оси Oy, будет:

512. Фигура, ограниченная гиперболой И

то половина искомого объема равна:

Следовательно, весь искомый объем

прямыми , вращается вокруг оси

Ох. Найти объем тела вращения.

Решение. В результате вращения данной фигуры вокруг оси Ox образуются два тела вращения, имеющие равные объемы Тогда

Найдем объем V1 тела (рис. 21), сбразованного вращением площади, ограниченной правей ветвью гиперболы И прямей Пределы интегрирова

ния найдем из геометрических соображений:

513. Вычислить объем тела, образованного вращением вокруг оси Ox одной полуволны синусоиды у = sin х.

514. Найти объем конуса, производимого вращением вокруг оси Ox части прямой _ , содержащейся между осями координат.

515. Криволинейная трапеция, ограниченная срерху параболой ,с боков—ординатами х = — I и х—, снизу — осью Ох, вращается вокруг оси Ох. Найти объем полученного тела вращения.

516. Вычислить объем тела, образованного вращением вокруг оси Ox площади, ограниченной цепной линией

, ординатами X = — а, х = а и осью Ох.

517. Прямой параболический сегмент, основание которого а, а высота R, вращается вокруг основания. Определить объем полученного тела вращения.

518. Найти объем цирка, осевое сечение которого — парабола. Высота цирка 30 м. Диаметр основания 50 м.

519. Найти объем тела, образованного вращением кривой Вокруг оси абсцисс.

520. Вычислить объем тела, полученного вращением

астроиды Вокруг оси Oy.

521. На кривой Взяты две точки А и В, абсциссы которых соответственно а = I и Ь = 2. Найти объем тела, полученного вращением криволинейной трапеции аАВЬ вокруг оси Ох.

522. Найти объем тела, производимого вращением площади, ограниченной дугой циклоиды ,

И осью Ox вокруг ее основания.

523. Вычислить объем тела, образованного вращением вокруг оси ординат дуги OM циклоиды ,

, ограниченной точками О (0, 0) и M (та*, 2а).

524. Найти объем тела, ограниченного поверхностью, полученной при вращении линии

вокруг оси абсцисс.

2. Площадь поверхности тела вращения. Предварительно изучите по учебнику Г. М. Фихтенгольца главу XII, п° 205. В теоретическом курсе показано, что площадь поверхности тела вращения определяется по формуле:

52$. Определить площадь поверхности параболоида, образованного вращением дуги параболы у2 = 2х вокруг оси Ox от х = 0 до х = 2.

Решение. В нашем случае . Поэтому

526. Найти площадь поверхности шара радиуса R. Решение. Поместим начало координат в центре шара. Будем рассматривать поверхность шара как поверхность, полученную в результате вращения полуокружности Вокруг оси Ох. Тогда площадь поверхности шара найдется по формуле:

527. Найти площадь поверхности эллипсоида, образованного вращением эллипса Вокруг оси Ох.

Решение. Из уравнения эллипса имеем:

Тогда . Так как полуось эллипса

Если кривая задана параметрически, то, заменяя переменную под знаком определенного интеграла, получим для площади поверхности следующую формулу:

528 Вычислить площадь поверхности, сбразованной вращением одной арки циклоиды

Вокруг оси Ox (см. рис. 13).

Тогда . Искомая по

Решение. Построим данную кривую. Найдем точки пересечения ее с осями координат.

нием петли кривой х = /2, у

(/2— 3) вокруг оси Ох.

При у — 0 находим t = 0 и t = ±>/ 3 . Следовательно, X1 = 0 и X2 -= 3* т. е. кривая пересекает ось Ox в двух точках О (0, 0) и А (3, 0).

При х = 0 находим / = 0, следовательно, у = 0. Мы получили ту же точку О (0, 0).

При люб dx вещественных значениях параметра / будут вещественны х и у Так как х — четная функция параметра /, у — нечетная функция параметра /, то график расположен симметрично относительно оси Ох.

Исследуем данную функцию на экстремум. Находим производную:

Легко видеть, что у = 0 при / = + I и, следовательно^

у — + —; когда X= I; у’-* оо, когда / —> 0, следовательно,

когда х -> 0, то и у 0. Это значит, что в начале координат касательная к данной кривой вертикальна. В точке

А (3; 0) будет у’ = — J=, это значит, что касательная У з

к данной кривой в этой точке образует с положительным направлением оси Ox угол в 30°.

Полученных данных достаточно для построения графика данной функции (рис. 22).

Найдем площадь данной поверхности. Имеем: х’ = 21, y’ = f — I; х’% -(-y’z = (I +12 )а.

Р=2* Jyj/T^T |±( —sin ф), у = а (I — cos ф) вокруг оси Oy, равна 16 и2 о2.

539. Найти поверхность, полученную вращением кардиоиды Вокруг полярной оси.

540. Найти площадь поверхности, образованной вращением лемнискаты Вокруг полярной оси.

Дополнительные задачи к главе IV

Площади плоских фигур

541. Найтивсю площадь области, ограниченной кривой И осью Ох.

542. Найти площадь области, ограниченной кривой

543. Найти часть площади области, расположенной в первом квадранте и ограниченной кривой

л осями координат.

544. Найти площадь области, содержащейся внутри

545. Найти площадь области, ограниченной одной петлей кривой:

546. Найти площадь области, содержащейся внутри петли:

547. Найти площадь области, ограниченной кривой

548. Найти площадь области, ограниченной кривой

549. Найти площадь области, ограниченной осью Oxr

прямой И кривой

550. Найти площадь области, ограниченной кривыми.

Вычисление длины дуги

551. Найти длину дуги кривой От точки А(0: до точки В (I: 6).

552. Найти длину дуги CD кривой , где

Дать геометрическую иллюстрацию.

553. Найти длину дуги OA кривой Где

554. Найти длину дуги AB кривой у = еху где А (0; I), В (I; 2)

555. Нгйти длину дуги AB кривой , где

556. Нгйти длину дуги кривой , отсеченной прямей X = — I.

557. Нгйти длину дуги кривой От

Объем тела вращения

558. Нгйти объем тела, полученного вращением вокруг юси Ox п/ощоди, сграниченной крквой

559. Нййти объем тела, полученного от вращения рокруг сси Ox площади, ограниченной кривой

560. Найти объем тела, образованного вращением вокруг оси Oy площади, ограниченной кривой

561. Найти объем тела, образованного вращением вокруг оси Oy площади, ограниченней эллипсом

562. Нгйти объем тела, полученного вращением вокруг оси Oy плещади, ограниченной кривой

И отрезком оси Oy.

563. Найти объем тела, полученного вращением вокруг оси Ox площади, ограниченной кривой

564. Круг радиуса 2 с центром в точке (7; 0) вращается вокруг оси Oy. Определить объем полученного тела вращения.

565. Нлйти объем тела, полученного вращением вокруг оси Ox площади, расположенной в первом квадранте и

ограниченной кривой (эволюта

Площадь поверхности вращения

566. Найти площадь поверхности, образованной вращением дуги кривой , отсеченной прямой

567. Найти площадь поверхности шаоовой чаши, полученной при вращении круга Вокруг оси Ox в пределах от 0 до h.

568. Найти площадь поверхности катеноида, образованного вращением вокруг оси абсцисс цепной линии

От точки До точки

569. Найти площадь поверхности эллипсоида, образованного вращением эллипса Вокруг оси Oy.

570. Найти площадь поверхности, образованной вращением вокруг оси Ox петли кривой

571. Найти площадь поверхности, образованной вращением вокруг оси Ox кривой

572. Найти площадь поверхности, образованной вращением Вокруг полярной оси.

Видео:Объем тела вращения на примере тора. 2 способаСкачать

Объем тела вращения на примере тора. 2 способа

Поверхности второго порядка. Поверхности вращения.

Поверхность S называется поверхностью вращения вокруг оси OZ, если для любой точки M0(x0,y0,z0)

этой поверхности окружность, проходящая через эту точку в плоскости z=z0 с центром в (0,0,z0) и радиусом

Вращение окружности вокруг оси ох, целиком принадлежит этой поверхности.

Теорема (об уравнении поверхности вращения).

Если в некоторой декартовой прямоугольной системе координат поверхность S задана уравнением

F(x 2 +y 2 ,z)=0, то S — поверхность вращения вокруг оси OZ.

Эллипсоид:

Вращение окружности вокруг оси ох

Вращение окружности вокруг оси охВращение окружности вокруг оси ох

Мнимый эллипсоид.

Вращение окружности вокруг оси ох

где a > 0, b > 0, c > 0. Эта поверхность не имеет ни одной вещественной точки.

Свойства эллипсоида.

1. Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует, что Вращение окружности вокруг оси ох Вращение окружности вокруг оси ох Вращение окружности вокруг оси ох

2. Эллипсоид обладает:

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно координатных осей,
  • плоскостной симметрией относительно начала координат.

3. В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается

Однополостной гиперболоид.

Свойства однополостного гиперболоида.

1. Однополостной гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что

2. Однополостной гиперболоид обладает:

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно всех координатных осей,
  • плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, получается

эллипс, а плоскостями, ортогональными осям Ox и Oyгипербола.

Вращение окружности вокруг оси ох

Вращение окружности вокруг оси охВращение окружности вокруг оси ох

Двуполостной гиперболоид.

Свойства двуполостного гиперболоида.

1. Двуполостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует,

что Вращение окружности вокруг оси ох и неограничен сверху.

2. Двуполостный гиперболоид обладает

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно всех координатных осей,
  • плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, при

получается эллипс, при – точка, а в сечении плоскостями, перпендикулярными осям

Ox и Oy, – гипербола.

Вращение окружности вокруг оси ох Вращение окружности вокруг оси охВращение окружности вокруг оси ох

Эллиптический параболоид.

Вращение окружности вокруг оси ох

Вращение окружности вокруг оси охВращение окружности вокруг оси ох

В случае, если a=b≠0, перечисленные выше (эллипсоид, однополостной гиперболоид, двуполостной

гиперболоид, эллиптический параболоид) поверхности являются поверхностями вращения.

Эллиптический параболоид.

Свойства эллиптического параболоида.

1. Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует,

что z ≥ 0 и принимает сколь угодно большие значения.

2. Эллиптический параболоид обладает:

  • осевой симметрией относительно оси Oz,
  • плоскостной симметрией относительно координатных осей Oxz и Oyz.

3. В сечении эллиптического параболоида плоскостью, ортогональной оси Oz, получается эллипс, а

плоскостями, ортогональными осям Ox и Oy – парабола.

Уравнение эллиптического параболоида имеет вид:

Вращение окружности вокруг оси ох

Если a=b, то эллиптический параболоид представляет собой поверхность вращения, образованную

вращением параболы, параметр которой Вращение окружности вокруг оси ох, вокруг вертикальной оси, проходящей через

вершину и фокус данной параболы.

Пересечение эллиптического параболоида с плоскостью z=z0>0 является эллипсом.

Пересечение эллиптического параболоида с плоскостью x=x0 или y=y0 является параболой.

💡 Видео

Видеоурок "Объем тела вращения"Скачать

Видеоурок "Объем тела вращения"

ПОИ4. Объём тела вращения (вокруг оси ОХ).Скачать

ПОИ4. Объём тела вращения (вокруг оси ОХ).

Вращательное движение. 10 класс.Скачать

Вращательное движение. 10 класс.

Вращение вокруг горизонтальной оси. Метод оболочекСкачать

Вращение вокруг горизонтальной оси. Метод оболочек

Объем тела вращенияСкачать

Объем тела вращения

Метод слоев. Вращение графика функции х=f(у) вокруг оси уСкачать

Метод слоев. Вращение графика функции х=f(у) вокруг оси у

Оси и плоскости движения человекаСкачать

Оси и плоскости движения человека

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронталиСкачать

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронтали

Вращение тела вокруг неподвижной осиСкачать

Вращение тела вокруг неподвижной оси

Метод слоев. Вращение вокруг оси х. ПримерСкачать

Метод слоев. Вращение вокруг оси х. Пример

Вычисление площадей и объемов с помощью определённого интегралаСкачать

Вычисление площадей и объемов с помощью определённого интеграла

Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать

Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.

Вычисление объемов тел вращения (применение определенного интеграла)Скачать

Вычисление объемов тел вращения (применение определенного интеграла)

Вращение вокруг горизонтальной оси. Метод слоевСкачать

Вращение вокруг горизонтальной оси. Метод слоев

Объем тела. Метод оболочек. Вращение вокруг оси yСкачать

Объем тела. Метод оболочек. Вращение вокруг оси y

Вращение вокруг вертикальной прямой. Метод оболочекСкачать

Вращение вокруг вертикальной прямой. Метод оболочек
Поделиться или сохранить к себе: