Вписанный угол в прямоугольном треугольнике

Углы, связанные с окружностью
Вписанный угол в прямоугольном треугольникеВписанные и центральные углы
Вписанный угол в прямоугольном треугольникеУглы, образованные хордами, касательными и секущими
Вписанный угол в прямоугольном треугольникеДоказательства теорем об углах, связанных с окружностью

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Вписанный угол в прямоугольном треугольнике

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Вписанный угол в прямоугольном треугольнике

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголВписанный угол в прямоугольном треугольнике
Вписанный уголВписанный угол в прямоугольном треугольникеВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголВписанный угол в прямоугольном треугольникеВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголВписанный угол в прямоугольном треугольникеДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголВписанный угол в прямоугольном треугольникеВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаВписанный угол в прямоугольном треугольнике

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вписанный угол в прямоугольном треугольнике

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Вписанный угол в прямоугольном треугольнике

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Вписанный угол в прямоугольном треугольнике

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Вписанный угол в прямоугольном треугольнике

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Вписанный угол в прямоугольном треугольнике

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Вписанный угол в прямоугольном треугольнике

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиВписанный угол в прямоугольном треугольникеВписанный угол в прямоугольном треугольнике
Угол, образованный секущими, которые пересекаются вне кругаВписанный угол в прямоугольном треугольникеВписанный угол в прямоугольном треугольнике
Угол, образованный касательной и хордой, проходящей через точку касанияВписанный угол в прямоугольном треугольникеВписанный угол в прямоугольном треугольнике
Угол, образованный касательной и секущейВписанный угол в прямоугольном треугольникеВписанный угол в прямоугольном треугольнике
Угол, образованный двумя касательными к окружностиВписанный угол в прямоугольном треугольникеВписанный угол в прямоугольном треугольнике

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Угол, образованный пересекающимися хордами хордами
Вписанный угол в прямоугольном треугольнике
Формула: Вписанный угол в прямоугольном треугольнике
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Вписанный угол в прямоугольном треугольнике

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Вписанный угол в прямоугольном треугольнике
Формула: Вписанный угол в прямоугольном треугольнике
Угол, образованный касательной и секущей касательной и секущей
Формула: Вписанный угол в прямоугольном треугольнике

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Вписанный угол в прямоугольном треугольнике

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Решение прямоугольных треугольниковСкачать

Решение прямоугольных треугольников

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Вписанный угол в прямоугольном треугольнике

В этом случае справедливы равенства

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Вписанный угол в прямоугольном треугольнике

В этом случае справедливы равенства

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Вписанный угол в прямоугольном треугольнике

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Вписанный угол в прямоугольном треугольнике

Вписанный угол в прямоугольном треугольнике

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:✓ Квадрат вписан в прямоугольный треугольник | Ботай со мной #129 | Борис ТрушинСкачать

✓ Квадрат вписан в прямоугольный треугольник | Ботай со мной #129 | Борис Трушин

Прямоугольные треугольники

Прямоугольный треугольник — это треугольник, у которого один угол прямой (равен $90$ градусов).

Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.

2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.

3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.

5. В равнобедренном прямоугольном треугольнике гипотенуза равна катету, умноженному на $√2$

6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$

7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.

1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

В прямоугольном треугольнике $АВС$ для острого угла $В$:

5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.

6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.

7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$$/$$/$$/$
$cosα$$/$$/$$/$
$tgα$$/$$1$$√3$
$ctgα$$√3$$1$$/$

Площадь прямоугольного треугольника равна половине произведения его катетов

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $АВ=10, АС=√$. Найдите косинус внешнего угла при вершине $В$.

Так как внешний угол $АВD$ при вершине $В$ и угол $АВС$ смежные, то

Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Следовательно, для угла $АВС$:

Катет $ВС$ мы можем найти по теореме Пифагора:

Подставим найденное значение в формулу косинуса

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $sin⁡A=/, AC=9$. Найдите $АВ$.

Распишем синус угла $А$ по определению:

Так как мы знаем длину катета $АС$ и он не участвует в записи синуса угла $А$, то можем $ВС$ и $АВ$ взять за части $4х$ и $5х$ соответственно.

Применим теорему Пифагора, чтобы отыскать $«х»$

Так как длина $АВ$ составляет пять частей, то $3∙5=15$

В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:

Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.

В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.

Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Прямоугольный треугольник, формулы, задачи в общем виде

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Вписанный угол в прямоугольном треугольнике

Тема этого занятия – «Прямоугольный треугольник, формулы, задачи в общем виде». Для начала дадим еще раз определение прямоугольному треугольнику, повторим основные тригонометрические функции и формулы, в которых он применяется. Решим задачи на вписанную в такие треугольники окружность и описанную вокруг них окружность.

📹 Видео

Вписанный угол, опирающийся на диаметр (полуокружность). Геометрия 8-9 классСкачать

Вписанный угол, опирающийся на диаметр (полуокружность). Геометрия 8-9 класс

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать

8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольника

Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Острые углы прямоугольного треугольника равны 63 и 27. Найдите угол между биссектрисой и медианой...Скачать

Острые углы прямоугольного треугольника равны 63 и 27. Найдите угол между биссектрисой и медианой...

Вписанный в окружность прямоугольный треугольник.Скачать

Вписанный в окружность прямоугольный треугольник.

Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Медиана в прямоугольном треугольникеСкачать

Медиана в прямоугольном треугольнике

Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Найдите углы прямоугольного треугольника, если его гипотенуза равна 12, а площадь равна 18Скачать

Найдите углы прямоугольного треугольника, если его гипотенуза равна 12, а площадь равна 18

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

ВПИСАННЫЙ УГОЛ окружности ТЕОРЕМА 8 класс АтанасянСкачать

ВПИСАННЫЙ УГОЛ окружности ТЕОРЕМА 8 класс Атанасян

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»
Поделиться или сохранить к себе: