Два перпендикуляра к одной прямой параллельны между собой

Видео:Теорема о двух перпендикулярах к одной прямойСкачать

Теорема о двух перпендикулярах к одной прямой

Два перпендикуляра к одной прямой параллельны между собой

Определение.1. Параллельные прямое
Определение.2. Перпендикулярные прямые
Теорема.1. I свойство параллельных прямых
Теорема.2. II свойство параллельных прямых
Теорема.3. III свойство параллельных прямых
Теорема.4. IV свойство параллельных прямых
Теорема.5. V свойство параллельных прямых
Теорема.6. I признак параллельных прямых
Теорема.7. II признак параллельных прямых
Теорема.8. III признак параллельных прямых
Теорема.9. IV признак параллельных прямых
Теорема 10. V признак параллельных прямых
Теорема 11. Две прямые, параллельные третей
Теорема 11.1 Следствие
Теорема 12. Прямая, пересекающая одну из параллельных прямых
Теорема 13. Отрезки параллельных прямых
Теорема 14. Теорема Фалеса
Теорема 14.1. Параллельные прямые, пересекающие стороны угла
Теорема 15. Прямая, перпендикулярна одной из параллельных прямых
Теорема 16. Две (и более) прямые, перпендикулярные третей прямой

Определение 1. Параллельными называются прямые, которые не пересекаются, сколько бы мы их не продолжали.
На рисунке a и b.

Два перпендикуляра к одной прямой параллельны между собой

Определение 2. Перпендикулярными называются прямые, которые пересекаются под прямым углом.
На рисунке c и d.
Два перпендикуляра к одной прямой параллельны между собойПри пересечении пары прямых (параллельных в данном случае) некой прямой (такая прямая называется секущей прямой) образуются (акромя пройденных нами в теме углы смежных и вертикальных) следующие углы:
Внутренние накрестлежащие углы — 2 и 8; 3 и 5
Внешние накрестлежащие углы — 1 и 7; 4 и 6
Внутренние односторонние углы — 2 и 5; 3 и 8
Внешние односторонние углы — 1 и 6; 4 и 7
Соответственные углы — 1 и 5; 2 и 6; 3 и 7; 4 и 8
Между этими углами можно вывести закономерности. Свойства параллельных прямых:
Теорема 1. Внутренние накрестлежащие углы равны

Доказательство: Пусть a и b — две параллельные прямые, c — секущая, A и B — точки пересечения секущей с этими прямыми. Пусть утверждение теоремы ложно. Проведем тогда через точку A прямую d, такую что внутренние накрест лежащие углы при прямых b и d и секущей c равны. Тогда по первому признаку параллельности прямых, прямые b и d параллельны. Но прямые b и a параллельны. Значит, через точку A проходят две прямые — a и d, параллельные прямой b. Это противоречит IX аксиоме. Значит, утверждение теоремы верно. Теорема доказана.
Теорема 2. Внешние накрестлежащие углы равны

Доказательство: Очевидно из первого свойства параллельных прямых.
Теорема 3. Сумма внутренних односторонних углов равна 180 градусам

Доказательство: Очевидно из первого свойства параллельных прямых.
Теорема 4. Сумма внешних односторонних углов равна 180 градусам

Доказательство: Очевидно из первого свойства параллельных прямых.
Теорема 5. Соответственные углы равны

Доказательство: Очевидно из первого свойства параллельных прямых.

Два перпендикуляра к одной прямой параллельны между собой

Теорема 6. Если при пересечении двух прямых а и b третей прямой с внутренние накрестлежащие углы равны (одна пара), то такие прямые а и b являются параллельными
Два перпендикуляра к одной прямой параллельны между собой
Доказательство: Пусть прямые a и b пересекаются секущей в точках A и B, но прямые a и b пересекаются в точке C (рис. 15). Секущая c разбивает плоскость на две полуплоскости. В одной из них лежит точка C. Построим треугольник ABD, равный треугольнику ABC, с вершиной D в другой полуплоскости. Угол DAB равен углу ABC, а значит, точка D лежит на прямой a по условию. Аналогично точка D лежит на прямой b. Следовательно, точка D принадлежит прямым a и b. Значит, прямые a и b пересекаются в двух точках — C и D. Противоречие. Значит, исходное предположение не верно. Теорема доказана.
Теорема 7. Если при пересечении двух прямых а и b третей прямой с внешние накрестлежащие углы равны (одна пара), то такие прямые а и b являются параллельными

Доказательство: Очевидно из первого признака параллельности прямых.
Теорема 8. Если при пересечении двух прямых а и b третей прямой с сумма внутренних односторонних углов равна 180 градусам (одна пара), то такие прямые а и b являются параллельными

Доказательство: Очевидно из первого признака параллельности прямых.
Теорема 9. Если при пересечении двух прямых а и b третей прямой с сумма внешних односторонних углов равна 180 градусам (одна пара), то такие прямые а и b являются параллельными

Доказательство: Очевидно из первого признака параллельности прямых.
Теорема 10. Если при пересечении двух прямых а и b третей прямой с соответственные углы равны (одна пара), то такие прямые а и b являются параллельными

Доказательство: Очевидно из первого признака параллельности прямых.
Два перпендикуляра к одной прямой параллельны между собойТеорема 11. Две прямые, параллельные третей, параллельны.

Доказательство: Пусть прямые a и b параллельны прямой c. Допустим, что прямые a и b не па-раллельны. Тогда либо прямые a и b совпадают, что противоречит условию, либо пересекаются в не-которой точке S. Тогда через точку S проходит две прямые — a и b, параллельные прямой c, что противоречит IX аксиоме. Значит, исходное предположение не верно. Теорема доказана.
Теорема 11.1. Если параллельно одной из двух параллельных прямых провести третью прямую, вторая из этих прямых либо параллельна третьей, либо совпадает с ней.

Доказательство: Очевидно из теоремы 11 параллельности прямых.
Теорема 12. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую.
Теорема 13. Отрезки параллельных прямых, заключенные между некой (иной) парой параллельных прямых, равны.
Теорема 14. (Теорема Фалеса) Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.
Два перпендикуляра к одной прямой параллельны между собой
Доказательство: Пусть A1, A2, A3 — точки пересечения параллельных прямых с одной из сторон угла, и точка A2 лежит между точками A1 и A3. Пусть B1, B2, B3 — соответствующие точки пересечения этих прямых с другой стороной угла. Докажем, что если A1A2 = A2A3, то B1B2 = B2B3. Проведем через точку B2 прямую EF, параллельную прямой A1A3. Треугольники EB2B1 и FB2B3 равны по второму признаку равенства треугольников. У них стороны EB2 и FA2 равны по условию, углы B1B2E и B3B2F равны как вертикальные, а углы B1EB2 и B2FB3 равны как внутренние накрест лежащие при секущей EF. Значит, B1B2 = B2B3. Что и требовалось доказать.
Теорема 14.1.. Параллельные прямые, пересекая стороны угла, отсекают пропорциональные отрезки.

Два перпендикуляра к одной прямой параллельны между собойТеорема 15. Две (и более) прямые, перпендикулярные третей прямой, параллельны.

Доказательство: Действительно, внутренние накрест лежащие углы равны 90°. Следовательно, по первому признаку параллельных прямых, эти прямые параллельны.
Теорема 16. Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и второй.

Доказательство: Очевидно из теоремы 15.

Видео:Перпендикулярность прямой и плоскости. 10 класс.Скачать

Перпендикулярность прямой и плоскости. 10 класс.

Перпендикулярные прямые в геометрии с примерами

Определение: Две прямые называются перпендикулярными, если они пересекаются под прямым углом.

При пересечении двух перпендикулярных прямых образуются 4 прямых угла.

Отрезки и лучи называются перпендикулярными, если они лежат на перпендикулярных прямых. На рисунке 87 прямые Два перпендикуляра к одной прямой параллельны между собой

Два перпендикуляра к одной прямой параллельны между собой

Определение. Перпендикуляром к данной прямой называется отрезок, который лежит на прямой, перпендикулярной данной, один из концов которого (основание перпендикуляра) является точкой пересечения этих прямых.

Прямая Два перпендикуляра к одной прямой параллельны между собойперпендикулярна прямой Два перпендикуляра к одной прямой параллельны между собой(рис. 88). Отрезок АВ — перпендикуляр к прямой Два перпендикуляра к одной прямой параллельны между собой, точка В — основание перпендикуляра. Точку В также называют проекцией точки А на прямую Два перпендикуляра к одной прямой параллельны между собой.

Два перпендикуляра к одной прямой параллельны между собой

Если из точки М, которая не лежит на прямой Два перпендикуляра к одной прямой параллельны между собой, провести перпендикуляр МК к прямой Два перпендикуляра к одной прямой параллельны между собой(рис. 89), то получим перпендикуляр, опущенный из точки М на прямую Два перпендикуляра к одной прямой параллельны между собой. Если из точки Р, лежащей на прямой Два перпендикуляра к одной прямой параллельны между собой, провести перпендикуляр РЕ к прямой Два перпендикуляра к одной прямой параллельны между собой(рис. 90), то получим перпендикуляр, восстановленный (восставленный) к прямой Два перпендикуляра к одной прямой параллельны между собой.
Два перпендикуляра к одной прямой параллельны между собой

Теорема. Через точку, лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой, и только одну.

Дано: прямая Два перпендикуляра к одной прямой параллельны между собой; точка А; Два перпендикуляра к одной прямой параллельны между собой(рис. 91).

Два перпендикуляра к одной прямой параллельны между собой

Доказать: через точку А можно провести прямую, перпендикулярную прямой Два перпендикуляра к одной прямой параллельны между собой, и только одну.

Доказательство:

По аксиоме откладывания углов от луча АВ в данную полуплоскость можно отложить угол CAB, равный 90°, и притом только один. Тогда прямая АС перпендикулярна прямой Два перпендикуляра к одной прямой параллельны между собой. Предположим, что существует другая прямая AD, проходящая через точку А и перпендикулярная прямой Два перпендикуляра к одной прямой параллельны между собой. Тогда Два перпендикуляра к одной прямой параллельны между собойи от луча АВ в данную полуплоскость будут отложены два угла, равные 90°: Два перпендикуляра к одной прямой параллельны между собойА это невозможно по аксиоме откладывания углов. Следовательно, не существует другой прямой, проходящей через точку А и перпендикулярной прямой Два перпендикуляра к одной прямой параллельны между собой.

Теорема. Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой, и притом только одну.

Дано: прямая Два перпендикуляра к одной прямой параллельны между собой; точка A, Два перпендикуляра к одной прямой параллельны между собой(рис. 92).

Два перпендикуляра к одной прямой параллельны между собой

Доказать: через точку А можно провести прямую, перпендикулярную прямой Два перпендикуляра к одной прямой параллельны между собой, и притом только одну.

Доказательство:

1) В начале докажем, что через точку А можно провести прямую, перпендикулярную прямой Два перпендикуляра к одной прямой параллельны между собой. Мысленно перегнем лист с чертежом по прямой Два перпендикуляра к одной прямой параллельны между собой(совместим верхнюю полуплоскость с нижней, повернув ее вокруг прямой Два перпендикуляра к одной прямой параллельны между собой) (рис. 92, а). Точка А займет некоторое положение, которое обозначим точкой В. Вернем полуплоскости в прежнее положение и проведем прямую АВ. Так как углы 1 и 2 совпадают при наложении полуплоскостей, то они равны. А поскольку эти углы смежные, то каждый из них равен 90° и Два перпендикуляра к одной прямой параллельны между собой

2) Теперь докажем, что АВ — единственная прямая, проходящая через точку А и перпендикулярная прямой Два перпендикуляра к одной прямой параллельны между собой. Пусть прямая AD также перпендикулярна прямой Два перпендикуляра к одной прямой параллельны между собой. Тогда Два перпендикуляра к одной прямой параллельны между собой(рис. 92,6). Совместим полуплоскости еще раз. Угол 3 совпадет с углом 4, значит Два перпендикуляра к одной прямой параллельны между собойТогда Два перпендикуляра к одной прямой параллельны между собой— развернутый, и через точки А и В будут проходить две прямые: ранее проведенная прямая и прямая, проходящая через точки A, D и В. А это невозможно по аксиоме прямой. Следовательно, прямая AD не перпендикулярна прямой Два перпендикуляра к одной прямой параллельны между собой. Теорема доказана.

Из двух последних теорем следует, что на плоскости через любую точку можно провести прямую, перпендикулярную данной прямой, и притом только одну.

Теорема (о двух прямых, перпендикулярных третьей). На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Дано: Два перпендикуляра к одной прямой параллельны между собой(рис. 93).

Два перпендикуляра к одной прямой параллельны между собой

Доказать: Два перпендикуляра к одной прямой параллельны между собой

Доказательство:

Если предположить, что прямые Два перпендикуляра к одной прямой параллельны между собойи Два перпендикуляра к одной прямой параллельны между собойпересекаются в некоторой точке М, то окажется, что через точку М проходят две прямые Два перпендикуляра к одной прямой параллельны между собойи Два перпендикуляра к одной прямой параллельны между собой, перпендикулярные третьей прямой Два перпендикуляра к одной прямой параллельны между собой, а это невозможно. Значит, прямые Два перпендикуляра к одной прямой параллельны между собойи Два перпендикуляра к одной прямой параллельны между собойлежат в одной плоскости и не пересекаются, то есть параллельны между собой. Теорема доказана.

Теорема, обратная данной

Формулировка теоремы, как правило, состоит из двух частей: того, что дано, и того, что нужно доказать. Первая часть называется условием теоремы, вторая — заключением. Часто теорему формулируют в форме: «Если . (условие теоремы), то . (заключение теоремы)». Например, теорему о свойстве смежных углов можно сформулировать так: «Если углы смежные, то сумма этих двух углов равна 180°». «Углы смежные» — это условие теоремы, «сумма этих двух углов равна 180°» — заключение.

Если поменять условие и заключение теоремы местами, то получим утверждение, обратное данному. Для указанной выше теоремы получаем: «Если сумма двух углов равна 180°, то эти углы смежные». Но это утверждение неверно, поскольку можно привести пример двух углов, например, равных 60° и 120°, сумма которых 180°, но которые не являются смежными. Значит, приведенное утверждение не является теоремой.

Если же верно и обратное утверждение, то оно называется теоремой, обратной данной. Например, известна теорема: «Если сумма цифр числа делится на 3, то и число делится на 3» — и ей обратная: «Если число делится на 3, то и сумма цифр числа делится на 3».

Иногда прямую и обратную теоремы объединяют, употребляя при этом выражение «тогда и только тогда». Объединим вышеуказанные теоремы: «Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3».

Геометрия 3D

Пусть в пространстве прямая Два перпендикуляра к одной прямой параллельны между собойпересекает плоскость Два перпендикуляра к одной прямой параллельны между собойв точке В (рис. 98). Если прямая Два перпендикуляра к одной прямой параллельны между собойперпендикулярна любой прямой плоскости, проходящей через точку В, то она называется прямой, перпендикулярной плоскости. Пишут Два перпендикуляра к одной прямой параллельны между собойОтрезок АВ называется перпендикуляром к плоскости Два перпендикуляра к одной прямой параллельны между собой.

Два перпендикуляра к одной прямой параллельны между собой

Чтобы прямая Два перпендикуляра к одной прямой параллельны между собойбыла перпендикулярна плоскости Два перпендикуляра к одной прямой параллельны между собой, достаточно, чтобы она была перпендикулярна каким-то двум прямым плоскости, проходящим через точку В. Например, прямым Два перпендикуляра к одной прямой параллельны между собойи Два перпендикуляра к одной прямой параллельны между собой.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Признаки равенства треугольников
  • Признаки равенства прямоугольных треугольников
  • Соотношения в прямоугольном треугольнике
  • Сумма углов треугольника
  • Расстояние между параллельными прямыми
  • Задачи на построение циркулем и линейкой
  • Задачи на построение по геометрии
  • Угол — определение, виды, как обозначают с примерами

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Стереометрия. Страница 3

Два перпендикуляра к одной прямой параллельны между собой

  • Главная
  • Репетиторы
  • Учебные материалы
  • Контакты

Два перпендикуляра к одной прямой параллельны между собой

Видео:Перпендикуляр и наклонная в пространстве. 10 класс.Скачать

Перпендикуляр и наклонная в пространстве. 10 класс.

1. Перпендикулярность прямых в пространстве

Теорема. Если две пересекающиеся прямые параллельны двум перпендикулярным прямым, то они перпендикулярны и между собой.

Доказательство. Пусть а и b две перпендикулярные прямые, а точка F — их точка пересечения (Рис.1). А а’ и b’ параллельны им и точка F’ — их точка пересечения. Необходимо доказать, что a’ и b’ перпендикулярны между собой.

Если все прямые лежат в одной плоскости, то согласно теоремам планиметрии они перпендикулярны. Предположим, что наши прямые не лежат в одной плоскости. Тогда проведем через прямые а и b плоскость α. А через прямые a’ и b’ плоскость β. Тогда по признаку параллельности плоскостей эти две плоскости параллельны. Проведем плоскость через параллельные прямые a и a’. А в этой плоскости прямую AA’, параллельную прямой FF’. Проведем также плоскость через прямые b и b’. А в этой плоскости прямую BB’, параллельную прямой FF’. Тогда получим два параллелограмма — AFF’A’ и BFF’B’. Так как прямые a и a’, b и b’ параллельны по условию, а прямые AA’, FF’, BB’ по построению. По свойству параллелограмма противолежащие стороны равны. А следовательно треугольники AFB и A’F’B’ равны по трем сторонам. Отсюда следует, что угол при вершине F’ прямой. Т.е. прямые a’ и b’ перпендикулярны.

5. Пример 1

Докажите, что через точку, не лежащую в данной плоскости, можно провести только одну прямую, перпендикулярную данной плоскости.

Доказательство:

Пусть дана плоскость α и точка А, не лежащая на данной плоскости. Проведем в плоскости α две пересекающиеся прямые d и c. А через их точку пересечения О проведем прямую f, перпендикулярную d и с (Рис.6).

Тогда по признаку перпендикулярности прямой и плоскости, прямая f будет перпендикулярна плоскости α. Теперь проведем прямую АВ, параллельную прямой f. Тогда АВ будет перпендикуляром к плоскости α также.

Докажем, что АВ — единственный перпендикуляр. Допустим, что существует два перпендикуляра АВ и АB’ к плоскости α, которые проходят через точку А. Тогда через две пересекающиеся прямые АВ и АB’ проведем плоскость β. Она будет пересекать плоскость α по прямой b.

Возьмем на прямой b произвольную точку С и проведем в плоскости β прямую а, перпендикулярную прямой b. Тогда согласно аксиоме, (через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной), прямая АВ, параллельная прямой а, единственная. Т.е. перпендикуляр АВ к прямой b. Таким образом, перпендикуляр АВ единственный.

Два перпендикуляра к одной прямой параллельны между собой

Рис.6 Задача. Докажите, что через точку, не лежащую в данной плоскости.

Пример 2

Через точку А прямой а проведены перпендикулярные ей плоскость β и прямая b. Докажите, что прямая b лежит в плоскости β.

Доказательство:

Пусть дана прямая а, перпендикулярные ей плоскость β и прямая b. Плоскость β и прямая b проходят через точку А прямой а (Рис.7). Необходимо доказать, что прямая b принадлежит плоскости β.

Проведем через две пересекающиеся прямые а и b плоскость α. Тогда две плоскости α и β пересекаются по прямой b’. Так как точка А принадлежит обоим плоскостям, то она лежит на прямой b’.

Таким образом, получается, что через точку А проходят две прямые b и b’, которые принадлежат плоскости α. Плоскость β перпендикулярна прямой а по условию задачи. А следовательно, прямая а перпендикулярна прямой b’. Отсюда следует, что через точку А проходят две прямые, лежащие в одной плоскости α, и перпендикулярные прямой а. А это невозможно. Так как через точку прямой можно провести только одну перпендикулярную ей прямую. Следовательно, прямые b и b’ совпадают. А отсюда следует, что прямая b полностью принадлежит плоскости β.

Два перпендикуляра к одной прямой параллельны между собой

Рис.7 Задача. Через точку А прямой а проведены перпендикулярные ей плоскость β.

Пример 3

Через центр описанной около треугольника окружности проведена прямая, перпендикулярная плоскости треугольника. Докажите, что каждая точка этой прямой равноудалена от вершин треугольника.

Доказательство:

Пусть дан треугольник АВС и описанная вокруг него окружность с центром в точке О. Прямая а перпендикулярна плоскости треугольника (Рис.8). Необходимо доказать, что каждая точка прямой а равноудалена от вершин треугольника А, В и С.

Рассмотрим треугольник АВС. Вокруг него описана окружность с центром в точке О, поэтому отрезки АО, ВО и СО равны как радиусы. Теперь возьмем произвольную точку Х на прямой а. Так как прямая а перпендикулярна плоскости треугольника, то треугольники АОХ, ВОХ и СОХ равны по первому признаку равенства треугольников, т.е. по двум сторонам и углу между ними. У них сторона ОХ общая, а стороны АО, ВО и СО равны как радиусы. И углы между этими сторонами составляют 90°.

Отсюда можно сделать вывод, что стороны АХ, ВХ и СХ этих треугольников равны. Т.е. расстояние от вершин треугольника АВС до любой точки прямой а одинаковые.

Два перпендикуляра к одной прямой параллельны между собой

Рис.8 Задача. Через центр описанной около треугольника окружности.

Пример 4

Через вершину А прямоугольника ABCD проведена прямая АК, перпендикулярная его плоскости. Расстояние от точки К до других вершин прямоугольника равны 9 см, 13 см и 15 см. Найдите АК.

Решение:

Пусть дан прямоугольник АВСD и прямая АК, перпендикулярная плоскости прямоугольника. ВК = 9 см, СК = 15 см, DK = 13 см (Рис.9). Необходимо найти АК.

Так как прямая АК перпендикулярна плоскости прямоугольника, то она перпендикулярна прямым АВ, AD и АС. Отсюда следует, что по теореме Пифагора можно составить следующие соотношения:

АВ 2 + AK 2 = BK 2

АВ 2 + AD 2 + AK 2 = CK 2

АD 2 + AK 2 = DK 2

Решая первое и третье соотношение относительно АВ 2 , АD 2 и подставляя полученные выражения во второе, получим:

BK 2 — AK 2 + DK 2 — AK 2 + AK 2 = CK 2

AK 2 = BK 2 — CK 2 + DK 2

AK 2 = 9 2 — 15 2 + 13 2

AK 2 = 25 или АК = 5 см.

Два перпендикуляра к одной прямой параллельны между собой

Рис.9 Задача. Через вершину А прямоугольника ABCD.

Пример 5

Через основание трапеции проведена плоскость, отстоящая от другого основания на расстоянии 2 см. Найдите расстояние от точки пересечения диагоналей трапеции до этой плоскости, если основания трапеции относятся как 4:5 (верхнее к нижнему).

Решение:

Пусть дана трапеция АВСD. Плоскость α проведена через основание AD (Рис.10). ВС / AD = 4 / 5. Необходимо найти OO’.

Рассмотрим треугольники ВОС и AOD. Они подобны по трем углам. Коэффициент подобия составляет 4 / 5. Отсюда следует, что высоты ОЕ и ОF также относятся как 4 / 5.

Теперь рассмотрим треугольники FOO’ и FEE’. Они также подобны по трем углам. Коэффициент подобия у них составляет 5 / 9.

Таким образом, OO’ = EE’ 5 / 9 = 2*5 / 9 = 10 / 9 см.

Два перпендикуляра к одной прямой параллельны между собой

Рис.10 Задача. Через основание трапеции проведена плоскость.

📽️ Видео

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскостиСкачать

10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскости

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Геометрия. 7 класс. Теоремы. Т4. Перпендикуляр к прямой.Скачать

Геометрия. 7 класс. Теоремы. Т4. Перпендикуляр к прямой.

Параллельные прямые. 6 класс.Скачать

Параллельные прямые. 6 класс.

Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||Скачать

Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||

Теорема о трех перпендикулярах. Признак перпендикулярности плоскостей | Математика | TutorOnlineСкачать

Теорема о трех перпендикулярах. Признак перпендикулярности плоскостей  | Математика | TutorOnline

Перпендикулярные прямые. 6 класс.Скачать

Перпендикулярные прямые. 6 класс.

Геометрия 7 класс (Урок№33 - Повторение. Параллельные и перпендикулярные прямые.)Скачать

Геометрия 7 класс (Урок№33 - Повторение. Параллельные и перпендикулярные прямые.)

7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

7 класс, 28 урок, Аксиома параллельных прямыхСкачать

7 класс, 28 урок, Аксиома параллельных прямых

10 класс, 17 урок, Признак перпендикулярности прямой и плоскостиСкачать

10 класс, 17 урок, Признак перпендикулярности прямой и плоскости
Поделиться или сохранить к себе:
Главная > Учебные материалы > Математика: Стереометрия. Страница 3
Два перпендикуляра к одной прямой параллельны между собой
Два перпендикуляра к одной прямой параллельны между собой
1.Перпендикулярность прямых в пространстве.
2.Признак перпендикулярности прямой и плоскости.
3.Теорема о трех перпендикулярах.
4.Признак перпендикулярности плоскостей.
5.Расстояние между скрещивающимися прямыми.
6.Примеры.
1 2 3 4 5 6 7 8
Два перпендикуляра к одной прямой параллельны между собой
Два перпендикуляра к одной прямой параллельны между собой

Рис. 1 Перпендикулярность прямых в пространстве.

Видео:7 класс, 16 урок, Перпендикуляр к прямойСкачать

7 класс, 16 урок, Перпендикуляр к прямой

2.Признак перпендикулярности прямой и плоскости

Теорема. Прямая, перпендикулярная двум пересекающимся прямым на плоскости, перпендикулярна данной плоскости.

Доказательство. Пусть прямые k и b две пересекающиеся прямые на плоскости α. Прямая а перпендикулярна прямым k и b. Доказать, что прямая а перпендикулярна плоскости α. (Рис.2)

Проведем произвольную прямую х от точки А и прямую АВ, которая пересечет прямые k и b в точках К и В на плоскости α. Отложим на прямой а два равных отрезка в разные стороны АА’ и AA». Тогда треугольники АА’K и AA»K будут равны по двум сторонам и углу между ними. Так же как и треугольники АА’В и AA»В. Отсюда следует, что треугольники А’BK и А»BK равны по третьему признаку равенства треугольников. И следовательно, треугольники А’BE и A»BE равны, т.к. одна сторона у них общая ВЕ, стороны А’B и А»B равны из предыдущих рассуждений. Углы между этими сторонами также равны. Следовательно мы приходим к выводу, что треугольники А’AE и A»AE равны по трем сторонам. АЕ является медианой, биссектрисой и высотой, так как стороны А’Е и A»Е у них равные. И следовательно, угол между сторонами АА’ и АЕ равен 90°. Это значит, что прямая а перпендикулярна плоскости α.

Два перпендикуляра к одной прямой параллельны между собой

Рис.2 Признак перпендикулярности прямой и плоскости

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

3. Теорема о трех перпендикулярах

Теорема: если прямая, проведенная на плоскости и проходящая через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и наклонной.

Доказательство.

Пусть прямая СВ перпендикулярна плоскости α. АС — наклонная. Прямая а — прямая, проходящая через основание наклонной на плоскости α. (Рис.3)

Проведем прямую через основание наклонной AD и параллельную прямой СВ. Тогда прямая AD также перпендикулярна плоскости α и соответственно прямой а. Проведем плоскость β через прямые АD и CB. Тогда, если прямая а перпендикулярна проекции наклонной АВ, то она перпендикулярна плоскости β. А следовательно, любой прямой в этой плоскости, т.е. самой наклонной АС.

Следует отметить, что верно и обратное утверждение. Если прямая, проведенная на плоскости через основание наклонной ей перпендикулярна, то она перпендикулярна и проекции наклонной на эту плоскость.

Два перпендикуляра к одной прямой параллельны между собой

Рис. 3 Теорема отрех перпендикулярах.

4. Признак перпендикулярности плоскостей

Теорема: Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость перпендикулярна их прямой пересечения и пересекает их по перпендикулярным прямым.

Пусть даны две плоскости α и β, которые пересекаются по прямой с (Рис.4). Проведем плоскость γ, которая пересекает плоскости α и β по прямым а и b. Плоскость γ перпендикулярна прямой с. Прямые а и b также перпендикулярны прямой с. Следовательно плоскости α и β перпендикулярны.

Если взять другую плоскость, параллельную плоскости γ, например плоскость γ’, которая пересекает прямую с под прямым углом, она пересечет плоскости α и β по прямым a’ и b’, которые будут параллельны прямым а и b. По теореме о перпендикулярности прямых в пространстве прямые a’ и b’ также будут перпендикулярны, как и прямые а и b. Что и требовалось доказать.

Два перпендикуляра к одной прямой параллельны между собой

Рис. 4 Признак перпендикулярности плоскостей.

Теорема: Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Пусть α — плоскость. Прямая с перпендикулярна плоскости α. Точка А — точка пересечения прямой с и плоскости α (Рис.4.1). Проведем через прямую с плоскость β, которая будет пересекать плоскость α по прямой а. Необходимо доказать, что плоскости α и β перпендикулярны.

Проведем через точку А на плоскости α прямую b, перпендикулярную прямой а. Через прямые b и с проведем плоскость γ. Она перпендикулярна прямой а, так как прямая а перпендикулярна двум прямым b и с. Тогда плоскость β пересекает две плоскости α и γ по двум перпендикулярным прямым а и с. И пересекает прямую пересечения b под прямым углом. Следовательно плоскости α и β перпендикулярны.

Два перпендикуляра к одной прямой параллельны между собой

Рис. 4.1 Перпендикулярность плоскостей.

Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

5. Расстояние между скрещивающимися прямыми

Теорема. Две скрещивающиеся прямые имеют только один общий перпендикуляр, который также является перпендикуляром между параллельными плоскостями, проведенными через эти прямые.

Доказательство. Пусть а и b две скрещивающиеся прямые (Рис.5). Проведем через них две плоскости α и β, параллельные друг другу. А от прямой а проведем перпендикуляры на плоскость β. Таким образом, получим плоскость γ, которая перпендикулярна обоим плоскостям α и β и пересекает плоскость β по прямой a’. Прямые а и a’ параллельны. Прямая a’ пересекает прямую b в точке А. Следовательно, один из перпендикуляров, проведенных от каждой точки прямой а на плоскость β, т.е. отрезок АВ и есть общий перпендикуляр между прямыми а и b.

Допустим, что существует еще один общий перпендикуляр между прямыми а и b это CD. Тогда два перпендикуляра пересекают прямые а и b в точках А,В,С,D, которые в свою очередь параллельны между собой. Следовательно через них можно провести плоскость. А в этой плоскости лежат и две прямые а и b, которые также будут параллельны между собой. А это противоречит условию, т.к. прямые а и b являются скрещивающимися. Следовательно у двух скрещивающихся прямых может быть только один общий перпендикуляр.

Отсюда следует, что расстояние между двумя скрещивающимися прямыми равно длине их общего перпендикуляра.

Два перпендикуляра к одной прямой параллельны между собой

Рис. 5 Расстояние между скрещивающимися прямыми.

Два перпендикуляра к одной прямой параллельны между собой