Вписанный треугольник в окружность один из углов 30 градусов

Треугольник вписанный в окружность

Вписанный треугольник в окружность один из углов 30 градусов

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Вписанный треугольник в окружность один из углов 30 градусов

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Вписанный треугольник в окружность один из углов 30 градусов

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:Задача 6 №27913 ЕГЭ по математике. Урок 131Скачать

Задача 6 №27913 ЕГЭ по математике. Урок 131

Углы, связанные с окружностью

Вписанный треугольник в окружность один из углов 30 градусовВписанные и центральные углы
Вписанный треугольник в окружность один из углов 30 градусовУглы, образованные хордами, касательными и секущими
Вписанный треугольник в окружность один из углов 30 градусовДоказательства теорем об углах, связанных с окружностью

Видео:В окружности проведены диаметры AD и BC, угол OCD равен 30°. Найдите величину угла OAB.Скачать

В окружности проведены диаметры AD и BC, угол OCD равен 30°. Найдите величину угла OAB.

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Вписанный треугольник в окружность один из углов 30 градусов

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Вписанный треугольник в окружность один из углов 30 градусов

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:найти угол треугольника вписанного в окружность с центром на сторонеСкачать

найти угол треугольника вписанного в окружность с центром на стороне

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголВписанный треугольник в окружность один из углов 30 градусов
Вписанный уголВписанный треугольник в окружность один из углов 30 градусовВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголВписанный треугольник в окружность один из углов 30 градусовВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголВписанный треугольник в окружность один из углов 30 градусовДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголВписанный треугольник в окружность один из углов 30 градусовВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаВписанный треугольник в окружность один из углов 30 градусов

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вписанный треугольник в окружность один из углов 30 градусов

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Вписанный треугольник в окружность один из углов 30 градусов

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Вписанный треугольник в окружность один из углов 30 градусов

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Вписанный треугольник в окружность один из углов 30 градусов

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Вписанный треугольник в окружность один из углов 30 градусов

Видео:2140 угол C треугольника ABC вписанного в окружность радиуса 10 равен 30 градусовСкачать

2140 угол C треугольника ABC вписанного в окружность радиуса 10 равен 30 градусов

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиВписанный треугольник в окружность один из углов 30 градусовВписанный треугольник в окружность один из углов 30 градусов
Угол, образованный секущими, которые пересекаются вне кругаВписанный треугольник в окружность один из углов 30 градусовВписанный треугольник в окружность один из углов 30 градусов
Угол, образованный касательной и хордой, проходящей через точку касанияВписанный треугольник в окружность один из углов 30 градусовВписанный треугольник в окружность один из углов 30 градусов
Угол, образованный касательной и секущейВписанный треугольник в окружность один из углов 30 градусовВписанный треугольник в окружность один из углов 30 градусов
Угол, образованный двумя касательными к окружностиВписанный треугольник в окружность один из углов 30 градусовВписанный треугольник в окружность один из углов 30 градусов

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Угол, образованный пересекающимися хордами хордами
Вписанный треугольник в окружность один из углов 30 градусов
Формула: Вписанный треугольник в окружность один из углов 30 градусов
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Вписанный треугольник в окружность один из углов 30 градусов

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Вписанный треугольник в окружность один из углов 30 градусов
Формула: Вписанный треугольник в окружность один из углов 30 градусов
Угол, образованный касательной и секущей касательной и секущей
Формула: Вписанный треугольник в окружность один из углов 30 градусов

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Вписанный треугольник в окружность один из углов 30 градусов

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Вписанный треугольник в окружность один из углов 30 градусов

В этом случае справедливы равенства

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Вписанный треугольник в окружность один из углов 30 градусов

В этом случае справедливы равенства

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Вписанный треугольник в окружность один из углов 30 градусов

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Теорема синусов

Вписанный треугольник в окружность один из углов 30 градусов

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Деление окружности на 3; 6; 12 равных частейСкачать

Деление окружности на 3; 6; 12 равных частей

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Вписанный треугольник в окружность один из углов 30 градусов

Формула теоремы синусов:

Вписанный треугольник в окружность один из углов 30 градусов

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Вписанный треугольник в окружность один из углов 30 градусов

Из этой формулы мы получаем два соотношения:


    Вписанный треугольник в окружность один из углов 30 градусов

Вписанный треугольник в окружность один из углов 30 градусов
На b сокращаем, синусы переносим в знаменатели:
Вписанный треугольник в окружность один из углов 30 градусов

  • Вписанный треугольник в окружность один из углов 30 градусов
    bc sinα = ca sinβ
    Вписанный треугольник в окружность один из углов 30 градусов
  • Из этих двух соотношений получаем:

    Вписанный треугольник в окружность один из углов 30 градусов

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:Радиус описанной окружностиСкачать

    Радиус описанной окружности

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Вписанный треугольник в окружность один из углов 30 градусов

    Вписанный треугольник в окружность один из углов 30 градусов

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Вписанный треугольник в окружность один из углов 30 градусов

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Вписанный треугольник в окружность один из углов 30 градусов

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Вписанный треугольник в окружность один из углов 30 градусов

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Вписанный треугольник в окружность один из углов 30 градусов

    Вспомним свойство вписанного в окружность четырёхугольника:

    Вписанный треугольник в окружность один из углов 30 градусов

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Вписанный треугольник в окружность один из углов 30 градусов

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Вписанный треугольник в окружность один из углов 30 градусов

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Урок 22. Свойство катета прямоугольного треугольника, лежащего против угла в 30° (7 класс)Скачать

    Урок 22.  Свойство катета прямоугольного треугольника, лежащего против угла в 30° (7 класс)

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Вписанный треугольник в окружность один из углов 30 градусов

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Вписанный треугольник в окружность один из углов 30 градусов

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Вписанный треугольник в окружность один из углов 30 градусов

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Вписанный треугольник в окружность один из углов 30 градусов

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Вписанный треугольник в окружность один из углов 30 градусов

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Вписанный треугольник в окружность один из углов 30 градусов

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Вписанный треугольник в окружность один из углов 30 градусов

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:Вписанные в окружность углыСкачать

    Вписанные в окружность углы

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Вписанный треугольник в окружность один из углов 30 градусов
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Вписанный треугольник в окружность один из углов 30 градусов

    Вписанный треугольник в окружность один из углов 30 градусов

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:Как разделить окружность на 3 равные части или как вписать равнобедренный треугольник в окружностьСкачать

    Как разделить окружность на 3 равные части или как вписать равнобедренный треугольник в окружность

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Вписанный треугольник в окружность один из углов 30 градусов

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    🔥 Видео

    8 класс, 39 урок, Описанная окружностьСкачать

    8 класс, 39 урок, Описанная окружность

    Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

    Вписанные и центральные углы #огэ #огэматематика #математика

    Геометрия Один из углов ромба равен 60, а большая диагональ равна 24 см. Найдите радиус окружностиСкачать

    Геометрия Один из углов ромба равен 60, а большая диагональ равна 24 см. Найдите радиус окружности

    Вписанный в окружность прямоугольный треугольник.Скачать

    Вписанный в окружность прямоугольный треугольник.

    Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

    Вписанная и описанная около равнобедренного треугольника,  окружность
    Поделиться или сохранить к себе: