Определения
Центральный угол – это угол, вершина которого лежит в центре окружности.
Вписанный угол – это угол, вершина которого лежит на окружности.
Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.
Теорема
Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.
Доказательство
Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка (B) – вершина вписанного угла (ABC) и (BC) – диаметр окружности:
Треугольник (AOB) – равнобедренный, (AO = OB) , (angle AOC) – внешний, тогда (angle AOC = angle OAB + angle ABO = 2angle ABC) , откуда (angle ABC = 0,5cdotangle AOC = 0,5cdotbuildrelsmileover) .
Теперь рассмотрим произвольный вписанный угол (ABC) . Проведём диаметр окружности (BD) из вершины вписанного угла. Возможны два случая:
1) диаметр разрезал угол на два угла (angle ABD, angle CBD) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.
2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла (angle ABD, angle CBD) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.
Следствия
1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.
2. Вписанный угол, опирающийся на полуокружность, прямой.
3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.
Определения
Существует три типа взаимного расположения прямой и окружности:
1) прямая (a) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние (d) от центра окружности до прямой меньше радиуса (R) окружности (рис. 3).
2) прямая (b) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка (B) – точкой касания. В этом случае (d=R) (рис. 4).
3) прямая (c) не имеет общих точек с окружностью (рис. 5).
Теорема
1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.
2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.
Следствие
Отрезки касательных, проведенных из одной точки к окружности, равны.
Доказательство
Проведем к окружности из точки (K) две касательные (KA) и (KB) :
Значит, (OAperp KA, OBperp KB) как радиусы. Прямоугольные треугольники (triangle KAO) и (triangle KBO) равны по катету и гипотенузе, следовательно, (KA=KB) .
Следствие
Центр окружности (O) лежит на биссектрисе угла (AKB) , образованного двумя касательными, проведенными из одной точки (K) .
Теорема об угле между секущими
Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.
Доказательство
Пусть (M) – точка, из которой проведены две секущие как показано на рисунке:
Покажем, что (angle DMB = dfrac(buildrelsmileover — buildrelsmileover)) .
(angle DAB) – внешний угол треугольника (MAD) , тогда (angle DAB = angle DMB + angle MDA) , откуда (angle DMB = angle DAB — angle MDA) , но углы (angle DAB) и (angle MDA) – вписанные, тогда (angle DMB = angle DAB — angle MDA = fracbuildrelsmileover — fracbuildrelsmileover = frac(buildrelsmileover — buildrelsmileover)) , что и требовалось доказать.
Теорема об угле между пересекающимися хордами
Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: [angle CMD=dfrac12left(buildrelsmileover+buildrelsmileoverright)]
Доказательство
(angle BMA = angle CMD) как вертикальные.
Из треугольника (AMD) : (angle AMD = 180^circ — angle BDA — angle CAD = 180^circ — frac12buildrelsmileover — frac12buildrelsmileover) .
Но (angle AMD = 180^circ — angle CMD) , откуда заключаем, что [angle CMD = frac12cdotbuildrelsmileover + frac12cdotbuildrelsmileover = frac12(buildrelsmileover + buildrelsmileover).]
Теорема об угле между хордой и касательной
Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.
Доказательство
Пусть прямая (a) касается окружности в точке (A) , (AB) – хорда этой окружности, (O) – её центр. Пусть прямая, содержащая (OB) , пересекает (a) в точке (M) . Докажем, что (angle BAM = frac12cdot buildrelsmileover) .
Обозначим (angle OAB = alpha) . Так как (OA) и (OB) – радиусы, то (OA = OB) и (angle OBA = angle OAB = alpha) . Таким образом, (buildrelsmileover = angle AOB = 180^circ — 2alpha = 2(90^circ — alpha)) .
Так как (OA) – радиус, проведённый в точку касания, то (OAperp a) , то есть (angle OAM = 90^circ) , следовательно, (angle BAM = 90^circ — angle OAB = 90^circ — alpha = frac12cdotbuildrelsmileover) .
Теорема о дугах, стягиваемых равными хордами
Равные хорды стягивают равные дуги, меньшие полуокружности.
И наоборот: равные дуги стягиваются равными хордами.
Доказательство
1) Пусть (AB=CD) . Докажем, что меньшие полуокружности дуги (buildrelsmileover=buildrelsmileover) .
(triangle AOB=triangle COD) по трем сторонам, следовательно, (angle AOB=angle COD) . Но т.к. (angle AOB, angle COD) — центральные углы, опирающиеся на дуги (buildrelsmileover, buildrelsmileover) соответственно, то (buildrelsmileover=buildrelsmileover) .
2) Если (buildrelsmileover=buildrelsmileover) , то (triangle AOB=triangle COD) по двум сторонам (AO=BO=CO=DO) и углу между ними (angle AOB=angle COD) . Следовательно, и (AB=CD) .
Теорема
Если радиус делит хорду пополам, то он ей перпендикулярен.
Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.
Доказательство
1) Пусть (AN=NB) . Докажем, что (OQperp AB) .
Рассмотрим (triangle AOB) : он равнобедренный, т.к. (OA=OB) – радиусы окружности. Т.к. (ON) – медиана, проведенная к основанию, то она также является и высотой, следовательно, (ONperp AB) .
2) Пусть (OQperp AB) . Докажем, что (AN=NB) .
Аналогично (triangle AOB) – равнобедренный, (ON) – высота, следовательно, (ON) – медиана. Следовательно, (AN=NB) .
Теорема о произведении отрезков хорд
Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Доказательство
Пусть хорды (AB) и (CD) пересекаются в точке (E) .
Рассмотрим треугольники (ADE) и (CBE) . В этих треугольниках углы (1) и (2) равны, так как они вписанные и опираются на одну и ту же дугу (BD) , а углы (3) и (4) равны как вертикальные. Треугольники (ADE) и (CBE) подобны (по первому признаку подобия треугольников).
Тогда (dfrac = dfrac) , откуда (AEcdot BE = CEcdot DE) .
Теорема о касательной и секущей
Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.
Доказательство
Пусть касательная проходит через точку (M) и касается окружности в точке (A) . Пусть секущая проходит через точку (M) и пересекает окружность в точках (B) и (C) так что (MB . Покажем, что (MBcdot MC = MA^2) .
Рассмотрим треугольники (MBA) и (MCA) : (angle M) – общий, (angle BCA = 0,5cdotbuildrelsmileover) . По теореме об угле между касательной и секущей, (angle BAM = 0,5cdotbuildrelsmileover = angle BCA) . Таким образом, треугольники (MBA) и (MCA) подобны по двум углам.
Из подобия треугольников (MBA) и (MCA) имеем: (dfrac = dfrac) , что равносильно (MBcdot MC = MA^2) .
Следствие
Произведение секущей, проведённой из точки (O) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки (O) :
- Вписанная и описанная окружности
- Вписанная окружность
- Теорема 1 (об окружности, вписанной в треугольник)
- Готовые работы на аналогичную тему
- Описанная окружность
- Теорема 2 (об окружности, описанной около треугольника)
- Пример задачи на понятия вписанной и описанной окружности
- Окружность
- Основные термины
- Касательная
- Свойства касательной
- Хорда
- Свойства хорд
- Свойства окружности
- Теорема о касательной и секущей
- Теорема о секущих
- Углы в окружности
- Свойства углов, связанных с окружностью
- Длины и площади
- Вписанные и описанные окружности
- Окружность и треугольник
- Окружность и четырехугольники
- 💡 Видео
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Вписанная и описанная окружности
Вы будете перенаправлены на Автор24
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Вписанная окружность
Если все стороны многоугольника являются касательными одной окружности, то такая окружность называется вписанной в многоугольник (рис 1).
Многоугольник, удовлетворяющий условию определения 1, называется описанным около окружности.
Рисунок 1. Вписанная окружность
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Теорема 1 (об окружности, вписанной в треугольник)
В любой треугольник можно вписать окружность и притом только одну.
Доказательство.
Рассмотрим треугольник $ABC$. Проведем в нем биссектрисы, которые пересекаются в точке $O$ и проведем из нее перпендикуляры на стороны треугольника (Рис. 2)
Рисунок 2. Иллюстрация теоремы 1
Существование: Проведем окружность с центром в точке $O$ и радиусом $OK. $Так как точка $O$ лежит на трех биссектрисах, то она равноудалена от сторон треугольника $ABC$. То есть $OM=OK=OL$. Следовательно, построенная окружность также проходит через точки $M и L$. Так как $OM,OK и OL$ — перпендикуляры к сторонам треугольника, то по теореме о касательной к окружности, построенная окружность касается всех трех сторон треугольника. Следовательно, в силу произвольности треугольника, в любой треугольник можно вписать окружность.
Готовые работы на аналогичную тему
Единственность: Предположим, что в треугольник $ABC$ можно вписать еще одну окружность с центром в точке $O’$. Её центр равноудален от сторон треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OK$. Но тогда эта окружность совпадет с первой.
Теорема доказана.
Следствие 1: Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.
Приведем еще несколько фактов, связанных с понятием вписанной окружности:
Не во всякий четырехугольник можно вписать окружность.
В любом описанном четырехугольнике суммы противоположных сторон равны.
Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.
Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
Описанная окружность
Если на окружности лежат все вершины многоугольника, то окружность называется описанной около многоугольника (Рис. 3).
Многоугольник, удовлетворяющий условию определения 2, называется вписанным в окружность.
Рисунок 3. Описанная окружность
Видео:Все о вписанных и описанных окружностях с нуля | PARTAСкачать
Теорема 2 (об окружности, описанной около треугольника)
Около любого треугольника можно описать окружность и притом только одну.
Доказательство.
Рассмотрим треугольник $ABC$. Проведем в нем серединные перпендикуляры, пересекающиеся в точке $O$, и соединим ее с вершинами треугольника (рис. 4)
Рисунок 4. Иллюстрация теоремы 2
Существование: Построим окружность с центром в точке $O$ и радиусом $OC$. Точка $O$ равноудалена от вершин треугольника, то есть $OA=OB=OC$. Следовательно, построенная окружность проходит через все вершины данного треугольника, значит, она является описанной около этого треугольника.
Единственность: Предположим, что около треугольника $ABC$ можно описать еще одну окружность с центром в точке $O’$. Её центр равноудален от вершин треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OC.$ Но тогда эта окружность совпадет с первой.
Теорема доказана.
Следствие 1: Центр описанной около треугольника окружности совпадает с точкой пересечения его серединных перпендикуляров.
Приведем еще несколько фактов, связанных с понятием описанной окружности:
Около четырехугольника не всегда можно описать окружность.
В любом вписанном четырехугольнике сумма противоположных углов равна $^0$.
Если сумма противоположных углов четырехугольника равна $^0$, то около него можно описать окружность.
Видео:8 класс, 38 урок, Вписанная окружностьСкачать
Пример задачи на понятия вписанной и описанной окружности
В равнобедренном треугольнике основание равно 8 см, боковая сторона равна 5 см. Найти радиус вписанной окружности.
Решение.
Рассмотрим треугольник $ABC$. По следствию 1, мы знаем, что центр вписанной окружности лежит на пересечении биссектрис. Проведем биссектрисы $AK$ и $BM$, которые пересекаются в точке $O$. Проведем перпендикуляр $OH$ из точки $O$ на сторону $BC$. Изобразим рисунок:
Так как треугольник равнобедренный, то $BM$ и медиана и высота. По теореме Пифагора $^2=^2-^2, BM=sqrt<^2-frac<^2>>=sqrt=sqrt=3$. $OM=OH=r$ — искомый радиус вписанной окружности. Так как $MC$ и $CH$ отрезки пересекающихся касательных, то по теореме о пересекающихся касательных, имеем $CH=MC=4 см$. Следовательно, $BH=5-4=1 см$. $BO=3-r$. Из треугольника $OHB$, по теореме Пифагора, получим:
Ответ: $frac$.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 29 03 2022
Окружность
Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, — радиусом окружности.
Часть плоскости, ограниченная окружностью называется кругом.
Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Основные термины
Касательная
Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
Свойства касательной
- Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Хорда
Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром.
Свойства хорд
- Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.
Дуги, заключенные между параллельными хордами, равны.
Если две хорды окружности, AB и CD пересекаются в точке M , то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD.
Видео:Вписанная и описанная окружность | Теорема синусов | Теоремы об окружностях - 2Скачать
Свойства окружности
- Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку ( касательная ); иметь с ней две общие точки ( секущая ).
- Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.
- Точка касания двух окружностей лежит на линии, соединяющей их центры.
Теорема о касательной и секущей
Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC 2 = MA•MB .
Теорема о секущих
Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. MA•MB = MC•MD.
Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
Углы в окружности
Центральным углом в окружности называется плоский угол с вершиной в ее центре.
Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом.
Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла.
Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.
Свойства углов, связанных с окружностью
- Вписанный угол либо равен половине соответствующего ему центрального угла, либо дополняет половину этого угла до 180°.
Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны.
Вписанный угол, опирающийся на диаметр, равен 90°.
Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.
Видео:8 класс, 39 урок, Описанная окружностьСкачать
Длины и площади
- Длина окружности C радиуса R вычисляется по формуле:
Площадь S круга радиуса R вычисляется по формуле:
Длина дуги окружности L радиуса R с центральным углом ,измеренным в радианах, вычисляется по формуле:
Площадь S сектора радиуса R с центральным углом в радиан вычисляется по формуле:
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Вписанные и описанные окружности
Окружность и треугольник
- центр вписанной окружности — точка пересечения биссектристреугольника, ее радиус r вычисляется по формуле:
где S — площадь треугольника, а — полупериметр;
центр описанной окружности — точка пересечения серединных перпендикуляров, ее радиус R вычисляется по формуле:
здесь a, b, c — стороны треугольника, — угол, лежащий против стороны a , S — площадь треугольника;
Окружность и четырехугольники
- около выпуклого четырехугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180°:
в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон:
- около параллелограмма можно описать окружность тогда и только тогда, когда он является прямоугольником;
- около трапеции можно описать окружность тогда и только тогда, когда эта трапеция — равнобедренная; центр окружности лежит на пересечении оси симметрии трапеции с серединным перпендикуляром к боковой стороне;
- в параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом.
💡 Видео
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Урок по теме ВПИСАННАЯ ОКРУЖНОСТЬСкачать
Геометрия 6. Радиусы вписанной и описанной окружностей.Скачать
Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать
Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать
Вписанная окружностьСкачать
Построить описанную окружность (Задача 1)Скачать