Виды треугольников в таблице

Виды треугольников

Треугольники бывают остроугольными, тупоугольными, прямоугольными, разносторонними, равносторонними, равнобедренными.

Определение 1. Треугольник называется остроугольным, если все ее углы острые, т.е. меньше 90° (Рис.1).

Виды треугольников в таблице

Определение 2. Треугольник называется тупоугольным, если один из его углов тупой, т.е. больше 90° (Рис.2).

Виды треугольников в таблице

Если треугольник тупоугольный, то исходя из того, что сумма всех углов треугольника равна 180°, остальные два угла треугольника будут острыми.

Определение 3. Треугольник называется прямоугольным, если один из его углов прямой, т.е. равен 90° (Рис.3).

Виды треугольников в таблице

Если треугольник прямоугольный, то исходя из того, что сумма всех углов треугольника равна 180°, остальные два угла треугольника будут острыми.

Определение 4. Треугольник называется разносторонним, если длины всех сторон треугольника разные (Рис.4).

Виды треугольников в таблице

Определение 5. Треугольник называется равносторонним или правильным, если длины всех сторон равны (Рис.5).

Виды треугольников в таблице

Определение 6. Треугольник называется равнобедренным, если длины двух сторон равны (Рис.6).

Виды треугольников в таблице

В равнобедренном треугольнике равные стороны называются боковыми сторонами треугольника, а третья сторона называется основанием.

Видео:Виды треугольниковСкачать

Виды треугольников

Треугольник — определение и основные свойства и виды треугольника

Что такое треугольник знают дети уже в самом младшем возрасте, они умеют находить треугольник среди множества геометрических фигур. Но вот уже в школе по геометрии проходят треугольник и надо не просто узнавать треугольник, но и дать определение этому понятию.

Видео:Виды треугольниковСкачать

Виды треугольников

Определение треугольника

Треугольник — это геометрическая фигура, окруженная тремя отрезками прямой (конечные точки каждых двух смежных отрезков соединены или перекрываются), называется треугольником. Точки пересечения отрезков называются вершинами треугольника, а сами отрезки между двумя соседними вершинами треугольника называются сторонами треугольника.

Посмотрите на треугольник на рисунке.

Виды треугольников в таблице

У него три вершины — Виды треугольников в таблице, Виды треугольников в таблице, Виды треугольников в таблицеи три стороны Виды треугольников в таблице, Виды треугольников в таблицеи Виды треугольников в таблице. У каждого треугольника есть имя — это имя образовано вершинами треугольника. Наш треугольник зовут Виды треугольников в таблице([а-бэ-цэ]). А треугольник на вот этом рисунке

Виды треугольников в таблице

будут звать Виды треугольников в таблице([эм-эн-ка]).

По правилам математической грамотности треугольник, как и любой другой многоугольник, следует называть, начиная с левого нижнего угла и называя все вершины по часовой стрелке.

В треугольнике можно провести особенные стороны — высоту, медиану и биссектрису. Начнем с высоты треугольника.

Видео:ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образованиеСкачать

ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образование

Высота треугольника

В каждом треугольнике можно провести три высоты. Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на противолежащую этой вершине сторону.

Например, в треугольнике Виды треугольников в таблице, высотой будет отрезок Виды треугольников в таблице.

Виды треугольников в таблице

А теперь проведем из каждой вершины по высоте — получим три высоты — больше провести высот нельзя.

Виды треугольников в таблице

В этом треугольнике три высоты Виды треугольников в таблице, Виды треугольников в таблице, Виды треугольников в таблице.

Про биссектрисы и медианы поговорим в других статьях. Сейчас же давайте с вами рассмотрим каким бывает треугольник.

Видео:Виды треугольников 3 классСкачать

Виды треугольников 3 класс

Виды треугольника

Виды треугольника могут быть по углам и по сторонам. То есть в первом случае вид треугольника зависит от того, какие в этом треугольнике углы, а во втором случае — какие в этом треугольнике стороны.

Виды треугольников по углам

В зависимости от того, все ли углы в треугольнике острые или есть тупой угол или угол, равный Виды треугольников в таблице, треугольник бывает остроугольным, тупоугольным или прямоугольным.

Посмотрите на рисунки — перед вами три основных вида треугольника:

Виды треугольников в таблице

Виды треугольников в таблице

Виды треугольников в таблице

Виды треугольников по сторонам

Если у треугольника все стороны равны, то такой треугольник называют равносторонним или правильным. Если у треугольника равны только две стороны, то такой треугольник называют равнобедренным.

На рисунке показаны равносторонний и равнобедренный треугольники.

Виды треугольников в таблице

Виды треугольников в таблице

Видео:Математика 6 класс. Треугольник. Виды треугольников. ЕГЭ, ОГЭ, ЦТ, экзаменСкачать

Математика 6 класс. Треугольник.  Виды треугольников. ЕГЭ, ОГЭ, ЦТ, экзамен

Свойства сторон треугольника

Треугольник имеет важные свойства и характеристики.

Устойчивость — это важное свойство треугольника, оно вам еще пригодится в курсе физики. Но вначале мы с ним знакомимся на уроках геометрии.

Треугольник устойчив на любой своей стороне — то есть чтобы вывести его из состояния равновесия надо приложить силу.

Свойства сторон: разница между любыми двумя сторонами треугольника меньше, чем третья сторона, а также любая сторона треугольника меньше, чем сумма двух других сторон. То есть: Виды треугольников в таблице

Например, пусть наш треугольник имеет длины двух сторон Виды треугольников в таблице, а Виды треугольников в таблицесм. В каком диапазоне будет размер третьей стороны треугольника?

Решение: согласно свойству сторон треугольника, получим:

Виды треугольников в таблице

Таким образом, третья сторона треугольника может быть в диапазоне от 4 до 10 см. Или в целых числах ее длина может быть 5, 6, 7, 8 или 9 см.

Правило существования треугольника

Используя свойство сторон треугольника мы можем определить существует ли треугольник с определенными сторонами.

Для проверки сложите длины самых коротких сторон и если сумма их больше длины самой большой стороны, тогда треугольник существует.

Например, существует ли треугольник с длинами сторон 3, 7 и 15 см?

Решение: проверим по свойству сторон треугольника: складываем две самые короткие стороны 3 и 7 см: 3+7=10, а 10 7 — треугольник с такими длинами сторон существует.

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Свойство углов в треугольнике

Сумма всех углов в треугольнике равна Виды треугольников в таблице.

Согласно этому свойству мы всегда можем, зная два угла в треугольнике, найти его третий угол. В прямоугольном треугольнике сумма двух острых углов всегда равна Виды треугольников в таблице.

Например, пусть известно, что в треугольнике Виды треугольников в таблице, Виды треугольников в таблице, Виды треугольников в таблице, нужно найти Виды треугольников в таблице.

Виды треугольников в таблице

Так как сумма углов в треугольнике равна Виды треугольников в таблице, то находим:

Виды треугольников в таблице.

Ответ: Виды треугольников в таблице.

Видео:Виды треугольников 3 класс математикаСкачать

Виды треугольников 3 класс математика

Элементы композиции

Многие школьники спрашивают — а зачем нам знать про треугольник, как это может пригодиться в обычной жизни? Треугольник — простая фигура из которой можно составить более сложные. Это используется во многих сферах жизни, например, вы можете эргономично убирать в своей комнате, или красиво выкладывать бутерброды. Например, из двух равных треугольников можно составить параллелограмм.

Виды треугольников в таблице

А из двух равных прямоугольных треугольником — прямоугольник или квадрат. Два треугольника могут образовать трапецию, так как на рисунке. А вот какую фигурку можно смоделировать для программируемой игры — она вся сделана из треугольников:

Виды треугольников в таблице

Мы, рассмотрели самые важные свойства треугольника, и в дальнейшем изучим еще больше разных интересных свойств, закономерностей. Несмотря на свою простоту, треугольник таит в себе много загадок и открытий.

Видео:Виды треугольников. 6 классСкачать

Виды треугольников. 6 класс

Геометрия. Урок 3. Треугольники

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Виды треугольников в таблице

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение треугольника
  • Виды треугольников
  • Отрезки в треугольнике

Видео:Математика 3 класс (Урок№63 - Виды треугольников по видам углов. Закрепление изученного материала.)Скачать

Математика 3 класс (Урок№63 - Виды треугольников по видам углов. Закрепление изученного материала.)

Определение треугольника

Треугольник – многоугольник с тремя сторонами и тремя углами.

Виды треугольников в таблице

Угол ∠ A – угол, образованный сторонами A B и A C и противолежащий стороне B C .

Угол ∠ B – угол, образованный сторонами B A и B C и противолежащий стороне A C .

Угол ∠ C – угол, образованный сторонами C B и C A и противолежащий стороне A B .

Видео:Тема 34. Виды треугольниковСкачать

Тема 34. Виды треугольников

Виды треугольников

Треугольник остроугольный , если все три угла в треугольнике острые.

Треугольник прямоугольный , если у него один из углов прямой ( = 90 ° ) .

Треугольник тупоугольный , если у него один из углов тупой.

Виды треугольников в таблице Виды треугольников в таблицеВиды треугольников в таблице

Основные свойства треугольника:

  • Против большей стороны лежит больший угол.
  • Против равных сторон лежат равные углы.
  • Сумма углов в треугольнике равна 180 ° .
  • Если продолжить одну из сторон треугольника, например, A C , и взять на продолжении стороны точку D , образуется внешний угол ∠ B C D к исходному углу ∠ A C B .

Видео:Виды треугольников. Построение треугольника | Математика 4 класс #38 | ИнфоурокСкачать

Виды треугольников. Построение треугольника | Математика 4 класс #38 | Инфоурок

Отрезки в треугольнике

Биссектриса угла – луч, выходящий из вершины угла и делящий его пополам.

Биссектриса треугольника – отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне.

Свойства биссектрис треугольника:

  • Биссектриса угла – геометрическое место точек, равноудаленных от сторон угла.
  • Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам:

Замечание: биссектриса угла – это луч, а биссектриса треугольника – отрезок.

Медиана треугольника – отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

Свойства медиан треугольника:

  • Медиана разбивает треугольник на два равновеликих треугольника (два треугольника, имеющих одинаковую площадь).
  • Медианы треугольника пересекаются в одной точке. Точка пересечения медиан делит их в отношении 2:1, считая от вершины.

Высота треугольника – это перпендикуляр, проведенный из вершины угла треугольника к прямой, содержащей противолежащую сторону этого треугольника.

Если треугольник остроугольный, то все три высоты будут лежать внутри треугольника. Если треугольник тупоугольный, то высоты, проведенные из вершин острых углов будут лежать вне треугольника, а высота, проведенная из вершины тупого угла будет лежать внутри треугольника.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Свойство средней линии треугольника: средняя линия параллельна одной из его сторон и равна половине этой стороны.

Всего в треугольнике можно провести три средние линии. Три средние линии разбивают исходный треугольник на четыре равных треугольника. Площадь каждого маленького треугольника будет равна четверти площади большого треугольника.

Видео:Виды треугольников | Математика 3 класс #44 | ИнфоурокСкачать

Виды треугольников | Математика 3 класс #44 | Инфоурок

Площадь треугольника

Площадь произвольного треугольника можно найти следующими способами:

    Полупроизведение стороны на высоту, проведенную к этой стороне.

Виды треугольников в таблице

Виды треугольников в таблице

Виды треугольников в таблице

Видео:Виды треугольников. 3 класс Школа РоссииСкачать

Виды треугольников. 3 класс Школа России

Равнобедренный треугольник

Равнобедренным называется треугольник, у которого две стороны равны.

Равнобедренный треугольник может быть остроугольным, прямоугольным и тупоугольным.

Виды треугольников в таблице Виды треугольников в таблицеВиды треугольников в таблице

Свойства равноберенного треугольника:

  • В равнобедренном треугольнике углы при основании равны.
  • В равнобедренном треугольнике медиана, высота и биссектриса, проведенные к основанию, совпадают.

Видео:Виды треугольников. Видеоурок по геометрии 7 классСкачать

Виды треугольников. Видеоурок по геометрии 7 класс

Равносторонний треугольник

Равносторонним называется треугольник, у которого все стороны и все углы равны.

Площадь равностороннего треугольника находится по формуле S = a 2 3 4

Высота равностороннего треугольника находится по формуле h = a 3 2

Видео:Видеоурок 25. Виды треугольников. Математика 3 классСкачать

Видеоурок 25. Виды треугольников. Математика 3 класс

Прямоугольный треугольник

Треугольник называется прямоугольным, если у него один из углов равен 90 ° .

Свойства прямоугольного треугольника:

  • Сумма двух острых углов треугольника равна 90 ° .
  • Катет, лежащий напротив угла в 30 ° , равен половине гипотенузы.
  • Если катет равен половине гипотенузы, он лежит напротив угла в 30 ° .

Видео:Виды треугольниковСкачать

Виды треугольников

Теорема Пифагора

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

У прямоугольного треугольника катеты перпендикулярны друг другу, следовательно, площадь можно найти по формуле:

Видео:Виды треугольников 4 классСкачать

Виды треугольников 4 класс

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с треугольниками

🌟 Видео

Виды треугольников по видам угловСкачать

Виды треугольников  по видам углов

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)
Поделиться или сохранить к себе: