Верно ли утверждение все вписанные углы окружности равны

Углы, связанные с окружностью
Верно ли утверждение все вписанные углы окружности равныВписанные и центральные углы
Верно ли утверждение все вписанные углы окружности равныУглы, образованные хордами, касательными и секущими
Верно ли утверждение все вписанные углы окружности равныДоказательства теорем об углах, связанных с окружностью

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Верно ли утверждение все вписанные углы окружности равны

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Верно ли утверждение все вписанные углы окружности равны

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:№60. Верно ли утверждение: если смежные углы равны, то они прямые?Скачать

№60. Верно ли утверждение: если смежные углы равны, то они прямые?

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголВерно ли утверждение все вписанные углы окружности равны
Вписанный уголВерно ли утверждение все вписанные углы окружности равныВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголВерно ли утверждение все вписанные углы окружности равныВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголВерно ли утверждение все вписанные углы окружности равныДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголВерно ли утверждение все вписанные углы окружности равныВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаВерно ли утверждение все вписанные углы окружности равны

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Верно ли утверждение все вписанные углы окружности равны

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Верно ли утверждение все вписанные углы окружности равны

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Верно ли утверждение все вписанные углы окружности равны

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Верно ли утверждение все вписанные углы окружности равны

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Верно ли утверждение все вписанные углы окружности равны

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Верно ли утверждение все вписанные углы окружности равны

Видео:№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать

№8. Верно ли утверждение: а) если две точки окружности лежат в плоскости

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиВерно ли утверждение все вписанные углы окружности равныВерно ли утверждение все вписанные углы окружности равны
Угол, образованный секущими, которые пересекаются вне кругаВерно ли утверждение все вписанные углы окружности равныВерно ли утверждение все вписанные углы окружности равны
Угол, образованный касательной и хордой, проходящей через точку касанияВерно ли утверждение все вписанные углы окружности равныВерно ли утверждение все вписанные углы окружности равны
Угол, образованный касательной и секущейВерно ли утверждение все вписанные углы окружности равныВерно ли утверждение все вписанные углы окружности равны
Угол, образованный двумя касательными к окружностиВерно ли утверждение все вписанные углы окружности равныВерно ли утверждение все вписанные углы окружности равны

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Угол, образованный пересекающимися хордами хордами
Верно ли утверждение все вписанные углы окружности равны
Формула: Верно ли утверждение все вписанные углы окружности равны
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Верно ли утверждение все вписанные углы окружности равны

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Верно ли утверждение все вписанные углы окружности равны
Формула: Верно ли утверждение все вписанные углы окружности равны
Угол, образованный касательной и секущей касательной и секущей
Формула: Верно ли утверждение все вписанные углы окружности равны

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Верно ли утверждение все вписанные углы окружности равны

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Верно ли утверждение все вписанные углы окружности равны

В этом случае справедливы равенства

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Верно ли утверждение все вписанные углы окружности равны

В этом случае справедливы равенства

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Верно ли утверждение все вписанные углы окружности равны

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Верно ли утверждение все вписанные углы окружности равны

Верно ли утверждение все вписанные углы окружности равны

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Центральные и вписанные углы

Верно ли утверждение все вписанные углы окружности равны

О чем эта статья:

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Верно ли утверждение все вписанные углы окружности равны

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Верно ли утверждение все вписанные углы окружности равны

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Верно ли утверждение все вписанные углы окружности равны

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Верно ли утверждение все вписанные углы окружности равны

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Верно ли утверждение все вписанные углы окружности равны

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Верно ли утверждение все вписанные углы окружности равны

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Верно ли утверждение все вписанные углы окружности равны

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Верно ли утверждение все вписанные углы окружности равны

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Верно ли утверждение все вписанные углы окружности равны

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Верно ли утверждение все вписанные углы окружности равны

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Верно ли утверждение все вписанные углы окружности равны

ㄥBAC + ㄥBDC = 180°

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Верно ли утверждение все вписанные углы окружности равны

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Верно ли утверждение все вписанные углы окружности равны

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Верно ли утверждение все вписанные углы окружности равны

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Верно ли утверждение все вписанные углы окружности равны

Какое из следующих утверждений верно?

1) Если расстояние между центрами двух окружностей равно сумме их диаметров, то эти окружности касаются.

2) Вписанные углы окружности равны.

3) Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.

4) Через любые четыре точки, не принадлежащие одной прямой, проходит единственная окружность.

Проверим каждое из утверждений.

1) «Если расстояние между центрами двух окружностей равно сумме их диаметров, то эти окружности касаются.» — неверно, если расстояние между центрами двух окружностей равно сумме их радиусов, то эти окружности касаются.

2) «Вписанные углы окружности равны.» — неверно, угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом. Они равны тогда, когда опираются на одну и ту же дугу.

3) «Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.» — верно, вписанный угол измеряется половиной дуги, на которую он опирается.

4) «Через любые четыре точки, не принадлежащие одной прямой, проходит единственная окружность.» — неверно, некоторые точки могут не попасть на окружность.

📽️ Видео

Вписанный угол, который опирается на диаметрСкачать

Вписанный угол, который опирается на диаметр

ОГЭ по математике. 3 вар. (20) Какое из следующих утверждений верно ОГЭСкачать

ОГЭ по математике. 3 вар. (20) Какое из следующих утверждений верно ОГЭ

Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

Геометрия 8 класс (Урок№27 - Теорема о вписанном угле.)Скачать

Геометрия 8 класс (Урок№27 - Теорема о вписанном угле.)

20 задание ОГЭ. 11429875. Анализ геометрических высказыванийСкачать

20 задание ОГЭ. 11429875. Анализ геометрических высказываний

Равенство вписанных в окружность углов, опирающихся на одну и ту же дугу.Скачать

Равенство вписанных в окружность углов, опирающихся на одну и ту же дугу.

Найти вписанные в окружность углы (bezbotvy)Скачать

Найти вписанные в окружность углы (bezbotvy)

Вписанный угол, опирающийся на хорду, равную радиусу окружностиСкачать

Вписанный угол, опирающийся на хорду, равную радиусу окружности

Геометрия 8 класс (Урок№33 - Описанная окружность.)Скачать

Геометрия 8 класс (Урок№33 - Описанная окружность.)
Поделиться или сохранить к себе: