Вектор перпендикулярный плоскости треугольника

Нахождение вектора, перпендикулярного данному вектору, примеры и решения

Данная статья раскрывает смысл перпендикулярности двух векторов на плоскости в трехмерном пространстве и нахождение координат вектора, перпендикулярному одному или целой паре векторов. Тема применима для задач, связанных с уравнениями прямых и плоскостей.

Мы рассмотрим необходимое и достаточное условие перпендикулярности двух векторов, решим по методу нахождения вектора, перпендикулярному заданному, затронем ситуации по отысканию вектора, который перпендикулярен двум векторам.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Необходимое и достаточное условие перпендикулярности двух векторов

Применим правило о перпендикулярных векторах на плоскости и в трехмерном пространстве.

При условии значения угла между двумя ненулевыми векторами равным 90 ° ( π 2 радиан) называют перпендикулярными.

Что это значит, и в каких ситуациях необходимо знать про их перпендикулярность?

Установление перпендикулярности возможно через чертеж. При отложении вектора на плоскости от заданных точек можно геометрически измерить угол между ними. Перпендикулярность векторов если и будет установлена, то не совсем точно. Чаще всего данные задачи не позволяют делать это при помощи транспортира, поэтому данный метод применим только в случае, когда ничего больше о векторах неизвестно.

Большинство случаев доказательства перпендикулярности двух ненулевых векторов на плоскости или в пространстве производится с помощью необходимого и достаточного условия перпендикулярности двух векторов.

Скалярное произведение двух ненулевых векторов a → и b → равном нулю для выполнения равенства a → , b → = 0 достаточно для их перпендикулярности.

Пусть заданные векторы a → и b → перпендикулярны, тогда выполним доказательство равенства a ⇀ , b → = 0 .

Из определения про скалярное произведение векторов мы знаем, что оно равняется произведению длин заданных векторов на косинус угла между ними. По условию a → и b → перпендикулярны, а, значит, исходя из определения, угол между ними 90 ° . Тогда имеем a → , b → = a → · b → · cos ( a → , b → ^ ) = a → · b → · cos 90 ° = 0 .

Вторая часть доказательства

При условии, когда a ⇀ , b → = 0 доказать перпендикулярность a → и b → .

По сути доказательство является обратным предыдущему. Известно, что a → и b → ненулевые, значит, из равенства a ⇀ , b → = a → · b → · cos ( a → , b → ) ^ найдем косинус. Тогда получим cos ( a → , b → ) ^ = ( a → , b → ) a → · b → = 0 a → · b → = 0 . Так как косинус равен нулю, можем сделать вывод, что угол a → , b → ^ векторов a → и b → равен 90 ° . По определению это и есть необходимое и достаточное свойство.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Условие перпендикулярности на координатной плоскости

Раздел скалярного произведения в координатах демонстрирует неравенство ( a → , b → ) = a x · b x + a y · b y , справедливое для векторов с координатами a → = ( a x , a y ) и b → = ( b x , b y ) , на плоскости и ( a → , b → ) = a x · b x + a y · b y для векторов a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) в пространстве. Необходимым и достаточным условием перпендикулярности двух векторов в координатной плоскости имеет вид a x · b x + a y · b y = 0 , для трехмерного пространства a x · b x + a y · b y + a z · b z = 0 .

Применим на практике и рассмотрим на примерах.

Проверить свойство перпендикулярности двух векторов a → = ( 2 , — 3 ) , b → = ( — 6 , — 4 ) .

Для решения данной задачи необходимо найти скалярное произведение. Если по условию оно будет равным нулю, значит, они перпендикулярны.

( a → , b → ) = a x · b x + a y · b y = 2 · ( — 6 ) + ( — 3 ) · ( — 4 ) = 0 . Условие выполнено, значит, заданные векторы перпендикулярны на плоскости.

Ответ: да, заданные векторы a → и b → перпендикулярны.

Даны координатные векторы i → , j → , k → . Проверить, могут ли векторы i → — j → и i → + 2 · j → + 2 · k → быть перпендикулярными.

Для того, чтобы вспомнить, как определяются координаты вектора, нужно прочитать статью про координаты вектора в прямоугольной системе координат. Таким образом получаем, что у заданных векторов i → — j → и i → + 2 · j → + 2 · k → имеются соответствующие координаты ( 1 , — 1 , 0 ) и ( 1 , 2 , 2 ) . Подставляем числовые значения и получаем: i → + 2 · j → + 2 · k → , i → — j → = 1 · 1 + ( — 1 ) · 2 + 0 · 2 = — 1 .

Выражение не равно нулю, ( i → + 2 · j → + 2 · k → , i → — j → ) ≠ 0 , а это означает, что векторы i → — j → и i → + 2 · j → + 2 · k → не перпендикулярны, так как условие не выполнилось.

Ответ: нет, векторы i → — j → и i → + 2 · j → + 2 · k → не перпендикулярны.

Даны векторы a → = ( 1 , 0 , — 2 ) и b → = ( λ , 5 , 1 ) . Найти значение λ , при котором данные векторы перпендикулярны.

Используем условие перпендикулярности двух векторов в пространстве в квадратной форме, тогда получим

a x · b x + a y · b y + a z · b z = 0 ⇔ 1 · λ + 0 · 5 + ( — 2 ) · 1 = 0 ⇔ λ = 2

Ответ: векторы перпендикулярны при значении λ = 2 .

Имеются случаи, когда вопрос о перпендикулярности невозможен даже при необходимом и достаточном условии. При известных данных о трех сторонах треугольника на двух векторах, возможно, найти угол между векторами и проверить его.

Дан треугольник А В С со сторонами А В = 8 , А С = 6 , В С = 10 см. проверить на перпендикулярность векторы A B → и A C → .

При перпендикулярности векторов A B → и A C → треугольник A B C считается прямоугольным. Тогда применим теорему Пифагора, где В С – гипотенуза треугольника. Равенство B C 2 = A B 2 + A C 2 должно выполниться. Отсюда следует, что 10 2 = 8 2 + 6 2 ⇔ 100 = 100 . Значит, А В и А С являются катетами треугольника А В С , следовательно, A B → и A C → перпендикулярны.

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Нахождение вектора, перпендикулярного данному

Важно научиться находить координаты вектора, перпендикулярного заданному. Это возможно как на плоскости, так и в пространстве при условии перпендикулярности векторов.

Нахождение вектора, перпендикулярного данному в плоскости.

Ненулевой вектор a → может иметь бесконечное количество перпендикулярных векторов на плоскости. Изобразим это на координатной прямой.

Вектор перпендикулярный плоскости треугольника

Задан ненулевой вектор a → , лежащий на прямой а. Тогда заданный b → , расположенный на любой прямой, перпендикулярной прямой а, становится перпендикулярным и a → . Если вектору i → перпендикулярен вектор j → или любой из векторов λ · j → при λ равной любому действительному числу кроме нуля, то нахождение координат вектора b → , перпендикулярному a → = ( a x , a y ) , сводится к бесконечному множеству решений. Но необходимо найти координаты вектора, перпендикулярного a → = ( a x , a y ) . Для этого необходимо записать условие перпендикулярности векторов в такой форме a x · b x + a y · b y = 0 . Имеем b x и b y , являющиеся искомыми координатами перпендикулярного вектора. Когда a x ≠ 0 , значение b y является ненулевым, а b x вычислим из неравенства a x · b x + a y · b y = 0 ⇔ b x = — a y · b y a x . При a x = 0 и a y ≠ 0 присваиваем b x любое значение кроме нуля, а b y находим из выражения b y = — a x · b x a y .

Дан вектор с координатами a → = ( — 2 , 2 ) . Найти перпендикулярный данному вектор.

Обозначим искомый вектор как b → ( b x , b y ) . Найти его координаты можно из условия перпендикулярности векторов a → и b → . Тогда получим: ( a → , b → ) = a x · b x + a y · b y = — 2 · b x + 2 · b y = 0 . Присвоим b y = 1 и подставим: — 2 · b x + 2 · b y = 0 ⇔ — 2 · b x + 2 = 0 . Отсюда из формулы получим b x = — 2 — 2 = 1 2 . Значит, вектор b → = ( 1 2 , 1 ) является вектором, перпендикулярным a → .

Если ставится вопрос о трехмерном пространстве, задача решается по такому же принципу. При заданном векторе a → = ( a x , a y , a z ) существует бесконечное множество перпендикулярных векторов. Зафиксирует это на координатной трехмерной плоскости. Дана a → , лежащая на прямой a . Перпендикулярную прямой a плоскость обозначаем α . В этом случае любой ненулевой вектор b → из плоскости α перпендикулярен a → .

Вектор перпендикулярный плоскости треугольника

Необходимо найти координаты b → , перпендикулярного ненулевому вектору a → = ( a x , a y , a z ) .

Пусть задан b → с координатами b x , b y и b z . Чтобы найти их, необходимо применить определение условия перпендикулярности двух векторов. Равенство a x · b x + a y · b y + a z · b z = 0 должно выполняться. Из условия a → — ненулевой, значит, одна из координат имеет значение не равное нулю. Предположим, что a x ≠ 0 , ( a y ≠ 0 или a z ≠ 0 ). Следовательно, имеем право разделить на эту координату все неравенство a x · b x + a y · b y + a z · b z = 0 , получим выражение b x + a y · b y + a z · b z a x = 0 ⇔ b x = — a y · b y + a z · b z a x . Присваиваем координатам b y и b x любое значение, вычисляем значение b x , исходя из формулы, b x = — a y · b y + a z · b z a x . Искомый перпендикулярный вектор будет иметь значение a → = ( a x , a y , a z ) .

Рассмотрим доказательство на примере.

Дан вектор с координатами a → = ( 1 , 2 , 3 ) . Найти вектор, перпендикулярный данному.

Обозначим искомый вектор за b → = ( b x , b y , b z ) . Исходя из условия о перпендикулярности векторов, скалярное произведение должно быть равным нулю.

a ⇀ , b ⇀ = 0 ⇔ a x · b x + a y · b y + a z · b z = 0 ⇔ 1 · b x + 2 · b y + 3 · b z = 0 ⇔ b x = — ( 2 · b y + 3 · b z )

Если значение b y = 1 , b z = 1 , тогда b x = — 2 · b y — 3 · b z = — ( 2 · 1 + 3 · 1 ) = — 5 . Отсюда следует, что координаты вектора b → ( — 5 , 1 , 1 ) . Вектор b → является одним из перпендикулярных векторов заданному.

Ответ: b → = ( — 5 , 1 , 1 ) .

Видео:Задача о векторах, построенных на медиане, биссектрисе и высоте треугольникаСкачать

Задача о векторах, построенных на медиане, биссектрисе и высоте треугольника

Нахождение координат вектора, перпендикулярного двум заданным векторам

Нужно найти координаты вектора в трехмерном пространстве. Он перпендикулярен не коллинеаренным векторам a → ( a x , a y , a z ) и b → = ( b x , b y , b z ) . При условии коллинеарности векторов a → и b → в задаче достаточно будет найти вектор, перпендикулярный a → или b → .

При решении применяется понятие векторного произведения векторов.

Векторным произведением векторов a → и b → называют вектор, одновременно перпендикулярный и a → и b → . Для решения данной задачи применяется векторное произведение a → × b → . Для трехмерного пространства имеет вид a → × b → = a → j → k → a x a y a z b x b y b z

Разберем подробнее векторное произведение на примере задачи.

Заданы векторы b → = ( 0 , 2 , 3 ) и a → = ( 2 , 1 , 0 ) . Найти координаты любого перпендикулярного вектора данным одновременно.

Для решения необходимо найти векторное произведение векторов. (Необходимо обратиться к пункту вычисления определителя матрицы для нахождения вектора). Получим :

a → × b → = i → j → k → 2 1 0 0 2 3 = i → · 1 · 3 + j → · 0 · 0 + k → · 2 · 2 — k → · 1 · 0 — j → · 2 · 3 — i → · 0 · 2 = 3 · i → + ( — 6 ) · j → + 4 · k →

Ответ: ( 3 , — 6 , 4 ) координаты вектора, одновременно перпендикулярного заданным a → и b → .

Видео:Координаты вектора, перпендикулярного векторамСкачать

Координаты вектора, перпендикулярного векторам

Перпендикулярность векторов

Мы можем выяснить, будут ли два каких-либо вектора взаимно перпендикулярными. Для этого нужно воспользоваться координатами векторов и некоторыми приемами, описанными в данной статье. Информация о перпендикулярности будет полезной для решения некоторых задач физики и математики.

Видео:Перпендикуляр и наклонная в пространстве. 10 класс.Скачать

Перпендикуляр и наклонная в пространстве. 10 класс.

Координаты вектора на плоскости, равного по модулю и перпендикулярного данному

Пусть на плоскости заданы координаты какого-либо вектора. Из этих координат получим координаты двух дополнительных векторов, перпендикулярных первоначальному вектору. Все три вектора будут иметь равные длины и располагаться в плоскости xOy.

Алгоритм получения координат перпендикулярных векторов

Вектор на плоскости xOy, перпендикулярный данному вектору получают так:

  1. Поменять местами координатные числа «x» и «y».
  2. Заменить знак у одной из координат на противоположный.

Графический пример

Рассмотрим небольшой графический пример (рис. 1).

Вектор перпендикулярный плоскости треугольника

На плоскости проведены три вектора: один красный и два черных и, отмечены их координаты. Рассмотрим подробнее координаты двух векторов: (vec) и (vec).

Вектор ( -vec = left ), также будет перпендикулярным вектору ( vec ): ( vec perp vec )

Векторы, изображенные черным цветом, перпендикулярны красному вектору.

Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Условие перпендикулярности векторов

Взаимную перпендикулярность двух векторов можно проверить, вычислив их скалярное произведение. Этот способ проверки можно применять для векторов, расположенных как на плоскости, так и в трехмерном пространстве.

Векторы будут перпендикулярными, когда их скалярное произведение равно нулю.

Пусть, известны координаты двух векторов и пусть каждый вектор имеет ненулевую длину.

Запишем условие перпендикулярности векторов.

Для двумерного случая:

[ large boxed < a_cdot b_ + a_ cdot b_ = 0 >]

Для трехмерного случая:

[ large boxed < a_cdot b_ + a_ cdot b_ + a_ cdot b_ = 0 >]

Пользуясь любой из этих формул, можно определить одну неизвестную координату вектора.

При этом, должны быть известными остальные координаты этого вектора и все координаты второго вектора.

Примечание:

Есть такое правило: Количество неизвестных должно равняться количеству уравнений.

Чтобы однозначно определить значение неизвестной, в уравнение должна входить только одна неизвестная. Остальные величины должны быть известными.

Видео:№204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр ОСкачать

№204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр О

Перпендикулярные векторы в физике

В физике перпендикулярность некоторых векторов достаточно важна.

Вот несколько примеров:

  1. Если угол между вектором скорости тела и вектором силы, действующей на тело, будет прямым, то такая сила работу по перемещению тела совершать не будет.
  2. На проводник с током магнитное поле действует максимальной силой, когда вектор магнитной индукции и вектор тока в проводнике перпендикулярны.
  3. Когда угол между вращающей силой и, расстоянием между точкой приложения силы и осью вращения, будет прямым, вращательный момент будет максимальным.
  4. Между линейной скоростью точки колеса и расстоянием от этой точки до оси вращения, угол прямой (радиус и касательная перпендикулярны).
  5. На вращающееся тело действует центростремительная сила. Угол прямой между этой силой и линейной скоростью точки тела (радиус и касательная перпендикулярны).

Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Вектор перпендикулярный плоскости треугольника

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Вектор перпендикулярный плоскости треугольника

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.

Вектор перпендикулярный плоскости треугольника
Вектор перпендикулярный плоскости треугольника

Длина вектора Вектор перпендикулярный плоскости треугольникав пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Вектор перпендикулярный плоскости треугольника

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Вектор перпендикулярный плоскости треугольника

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Вектор перпендикулярный плоскости треугольника

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы Вектор перпендикулярный плоскости треугольникаи Вектор перпендикулярный плоскости треугольника.

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Произведение вектора на число:

Вектор перпендикулярный плоскости треугольника

Скалярное произведение векторов:

Вектор перпендикулярный плоскости треугольника

Косинус угла между векторами:

Вектор перпендикулярный плоскости треугольника

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Вектор перпендикулярный плоскости треугольника

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами Вектор перпендикулярный плоскости треугольникаи Вектор перпендикулярный плоскости треугольника. Для этого нужны их координаты.

Вектор перпендикулярный плоскости треугольника

Запишем координаты векторов:

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

и найдем косинус угла между векторами Вектор перпендикулярный плоскости треугольникаи Вектор перпендикулярный плоскости треугольника:

Вектор перпендикулярный плоскости треугольника

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Вектор перпендикулярный плоскости треугольника

Координаты точек A, B и C найти легко:

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Из прямоугольного треугольника AOS найдем Вектор перпендикулярный плоскости треугольника

Координаты вершины пирамиды: Вектор перпендикулярный плоскости треугольника

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Найдем координаты векторов Вектор перпендикулярный плоскости треугольникаи Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

и угол между ними:

Вектор перпендикулярный плоскости треугольника

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Вектор перпендикулярный плоскости треугольника

Запишем координаты точек:

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Вектор перпендикулярный плоскости треугольника

Найдем координаты векторов Вектор перпендикулярный плоскости треугольникаи Вектор перпендикулярный плоскости треугольника, а затем угол между ними:

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Видео:Векторы на плоскостиСкачать

Векторы на плоскости

Плоскость в пространстве задается уравнением:

Вектор перпендикулярный плоскости треугольника

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вектор перпендикулярный плоскости треугольника

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Вектор перпендикулярный плоскости треугольника

Подставим в него по очереди координаты точек M, N и K.

Вектор перпендикулярный плоскости треугольника

То есть A + C + D = 0.

Вектор перпендикулярный плоскости треугольникаВектор перпендикулярный плоскости треугольника

Аналогично для точки K:

Вектор перпендикулярный плоскости треугольника

Получили систему из трех уравнений:

Вектор перпендикулярный плоскости треугольника

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Выразим C и B через A и подставим в третье уравнение:

Вектор перпендикулярный плоскости треугольника

Решив систему, получим:

Вектор перпендикулярный плоскости треугольника

Уравнение плоскости MNK имеет вид:

Вектор перпендикулярный плоскости треугольника

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор перпендикулярный плоскости треугольника

Вектор Вектор перпендикулярный плоскости треугольника— это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку Вектор перпендикулярный плоскости треугольникаимеет вид:

Вектор перпендикулярный плоскости треугольника

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Вектор перпендикулярный плоскости треугольника

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Вектор перпендикулярный плоскости треугольника

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Вектор перпендикулярный плоскости треугольника

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор Вектор перпендикулярный плоскости треугольникаперпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть: Вектор перпендикулярный плоскости треугольника

Напишем уравнение плоскости AEF.

Вектор перпендикулярный плоскости треугольника

Берем уравнение плоскости Вектор перпендикулярный плоскости треугольникаи по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Вектор перпендикулярный плоскости треугольникаВектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF: Вектор перпендикулярный плоскости треугольника

Нормаль к плоскости AEF: Вектор перпендикулярный плоскости треугольника

Найдем угол между плоскостями:

Вектор перпендикулярный плоскости треугольника

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Вектор перпендикулярный плоскости треугольника

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор Вектор перпендикулярный плоскости треугольникаили, еще проще, вектор Вектор перпендикулярный плоскости треугольника.

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Координаты вектора Вектор перпендикулярный плоскости треугольника— тоже:

Вектор перпендикулярный плоскости треугольника

Находим угол между плоскостями, равный углу между нормалями к ним:

Вектор перпендикулярный плоскости треугольника

Зная косинус угла, находим его тангенс по формуле

Вектор перпендикулярный плоскости треугольника

Получим:
Вектор перпендикулярный плоскости треугольника

Ответ: Вектор перпендикулярный плоскости треугольника

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть Вектор перпендикулярный плоскости треугольника— вектор, лежащий на прямой m (или параллельный ей), Вектор перпендикулярный плоскости треугольника— нормаль к плоскости α.

Вектор перпендикулярный плоскости треугольника

Находим синус угла между прямой m и плоскостью α по формуле:

Вектор перпендикулярный плоскости треугольника

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Находим координаты вектора Вектор перпендикулярный плоскости треугольника.

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор Вектор перпендикулярный плоскости треугольника.

Найдем угол между прямой и плоскостью:

Вектор перпендикулярный плоскости треугольника

Ответ: Вектор перпендикулярный плоскости треугольника

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

Вектор перпендикулярный плоскости треугольника

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = Вектор перпендикулярный плоскости треугольника, AD = Вектор перпендикулярный плоскости треугольника. Высота параллелепипеда AA1 = Вектор перпендикулярный плоскости треугольника. Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Вектор перпендикулярный плоскости треугольника

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Вектор перпендикулярный плоскости треугольникаВектор перпендикулярный плоскости треугольника

Решим эту систему. Выберем Вектор перпендикулярный плоскости треугольника

Тогда Вектор перпендикулярный плоскости треугольника

Уравнение плоскости A1DB имеет вид:

Вектор перпендикулярный плоскости треугольника

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

Вектор перпендикулярный плоскости треугольника

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

📸 Видео

10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Площадь треугольника, построенного на векторахСкачать

Площадь треугольника, построенного на векторах

Условие перпендикулярности векторов. 11 класс.Скачать

Условие перпендикулярности векторов. 11 класс.

Уравнение плоскости через 2 точки параллельно векторуСкачать

Уравнение плоскости через 2 точки параллельно вектору

Теорема о трех перпендикулярах. Признак перпендикулярности плоскостей | Математика | TutorOnlineСкачать

Теорема о трех перпендикулярах. Признак перпендикулярности плоскостей  | Математика | TutorOnline

Единичный векторСкачать

Единичный вектор

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэ

Вычитание векторов. 9 класс.Скачать

Вычитание векторов. 9 класс.

Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямойСкачать

Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямой
Поделиться или сохранить к себе: