- Register
- Login
- Newsletter
- Таня Масян
- В прямоугольнике ABCD через точку P проведены прямая KM, параллельная сторонам AD и BC, и прямая LN, параллельная сторонам AB и CD. Периметр прямоугольника KBLP равен 8 см, а периметр прямоугольника NPMD равен 18 см. Найдите периметр прямоугольника ABCD
- В прямоугольнике abcd через точку p проведена прямая km параллельная сторонам ad bc
- Проверочная работа «16 задание ПРОФИЛЬ ЕГЭ математика»
- «Календарь счастливой жизни: инструменты и механизм работы для достижения своих целей»
- 🎥 Видео
Register
Do you already have an account? Login
Login
Don’t you have an account yet? Register
Newsletter
Submit to our newsletter to receive exclusive stories delivered to you inbox!
- Главная
- Вопросы & Ответы
- Вопрос 10258000
Таня Масян
Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать
В прямоугольнике ABCD через точку P проведены прямая KM, параллельная сторонам AD и BC, и прямая LN, параллельная сторонам AB и CD. Периметр прямоугольника KBLP равен 8 см, а периметр прямоугольника NPMD равен 18 см. Найдите периметр прямоугольника ABCD
Видео:Геометрия Через точку о пересечение диагоналей параллелограмма ABCD проведена прямая, пересекающаяСкачать
В прямоугольнике abcd через точку p проведена прямая km параллельная сторонам ad bc
Для объектов, указанных в таблице, определите, какими цифрами они обозначены на схеме. Заполните таблицу, в ответ запишите последовательность четырёх цифр.
Объекты | Магазин | Фитнес‐центр | Мастерская | Дом, где живёт Олег |
---|---|---|---|---|
Цифры |
На плане (см. рисунок) изображён район города, в котором проживает Вика. Сторона каждой клетки на плане равна 15 м. Рядом с домом Вики, обозначенным на плане цифрой 4, находится одноэтажный магазин площадью 900 м 2 и фитнес‐центр. В 15 м от магазина расположен дом, где живёт одноклассник Вики Артём. В 30 м от детской площадки находится дом, где живёт Олег. Если выйти из фитнес‐центра, пройти небольшой ельник, обозначенный цифрой 6, и детскую площадку, то приходишь к угловому дому, где живёт дедушка Вики. Рядом с ним находится мастерская по ремонту бытовой техники. Через дорогу от дома дедушки расположен рынок, а недалеко от него – мебельный центр площадью 2025 м 2 .
Решение . Рядом с домом Вики, обозначенным на плане цифрой 4, находится одноэтажный магазин площадью 900 м 2 и фитнес‐центр. Значит, магазин отмечен цифрой 7, а фитнес-центр — цифрой 5. 30 м от детской площадки находится дом, где живёт Олег. Следовательно, дом, где живёт Олег, обозначен цифрой 1. Если выйти из фитнес‐центра, пройти небольшой ельник, обозначенный цифрой 6, и детскую площадку, то приходишь к угловому дому, где живёт дедушка Вики. Рядом с ним находится мастерская по ремонту бытовой техники. Значит, мастерская отмечена цифрой 2.
Видео:№403. В прямоугольнике ABCD диагонали пересекаются в точке О. Найдите периметрСкачать
Проверочная работа «16 задание ПРОФИЛЬ ЕГЭ математика»
Видео:Через середину К медианы ВМ треугольника АВС и вершину А проведена прямая пересекающая сторону ВС вСкачать
«Календарь счастливой жизни:
инструменты и механизм работы
для достижения своих целей»
Сертификат и скидка на обучение каждому участнику
ПРОФИЛЬ ЕГЭ математика
1. Окружность, вписанная в ромб ABCD , касается сторон CD и BC в точках M и Q соответственно. Прямые AM и BC пересекаются в точке P.
а) Докажите, что
б) Найдите угол если DM = 4 и MC = 9.
2. Две окружности касаются внешним образом в точке C. Прямая касается меньшей окружности в точке A, а большей — в точке B, отличной от A. Прямая AC вторично пересекает большую окружность в точке D, прямая BC вторично пересекает меньшую окружность в точке E.
а) Докажите, что прямая AE параллельна прямой BD.
б) Пусть L — отличная от D точка пересечения отрезка DE с большей окружностью. Найдите EL, если радиусы окружностей равны 2 и 5.
3. В равнобедренной трапеции ABCD длины оснований AD и BC соответственно равны 4 и 3. Точки M и N лежат на диагонали BD, причем точка M расположена между точками B и N, а отрезки AM и CN перпендикулярны диагонали BD.
а) Докажите, что BN : DM = 3 : 4.
б) Найдите длину отрезка CN, если известно, что BM : DN = 2 : 3.
4. Дан треугольник ABC. Серединный перпендикуляр к стороне AB пересекается с биссектрисой угла BAC в точке K, лежащей на стороне BC.
а) Докажите, что
б) Найдите радиус окружности, вписанной в треугольник AKB , если а площадь треугольника AKC равна
5. Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекается в точке P, причём BC = CD.
а) Докажите, что
б) Найдите площадь треугольника COD, где O — центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD — диаметр описанной около четырёхугольника ABCD окружности, AB = 6, а
6. Две окружности касаются внутренним образом. Третья окружность касается первых двух и их линии центров.
а) Докажите, что периметр треугольника с вершинами в центрах трёх окружностей равен диаметру наибольшей из этих окружностей.
б) Найдите радиус третьей окружности, если известно, что радиусы первых двух равны 6 и 2.
7. На окружности с центром O и диаметром MN, равным 34, взята точка K на расстоянии 15 от этого диаметра. Хорда KE пересекает радиус OM в точке F под углом, равным
а) Докажите, что KF : FE = 125 : 29.
б) Найдите площадь треугольника KEN.
8. Прямая, проходящая через вершину В, прямоугольника ABCD, перпендикулярная диагонали АС и пересекает сторону АD в точке M, равноудаленной от вершин В и D.
а) Докажите, что ∠ ABM = ∠ DBC = ∠ MBD .
б) Найдите расстояние от точки О, точки пересечения диагоналей, до отрезка СМ, если BC = 42.
9. Две окружности касаются внутренним образом в точке С. Вершины A и B равнобедренного прямоугольного треугольника ABC c прямым углом C лежат на большей и меньшей окружностях соответственно. Прямая AC вторично пересекает меньшую окружность в точке D. Прямая BC вторично пересекает большую окружность в точке E.
а) Докажите, что AE параллельно BD.
б) Найдите AC, если радиусы окружностей равны 8 и 15.
10. Четырёхугольник ABCD вписан в окружность радиуса R = 10. Известно, что AB = BC = CD = 6.
а) Докажите,что прямые BC и AD параллельны.
ПРОФИЛЬ ЕГЭ математика
1. Прямая, проходящая через вершину В, прямоугольника ABCD, перпендикулярная диагонали АС и пересекает сторону АD в точке M, равноудаленной от вершин В и D.
а) Докажите, что BM и ВD делят угол В на три равных угла.
б) Найдите расстояние от точки пересечения диагоналей прямоугольника ABCD до прямой СМ, если
2. В прямоугольном треугольнике ABC проведена высота CH из вершины прямого угла. В треугольники ACH и BCH вписаны окружности с центрами O1 и O2 соответственно, касающиеся прямой CH в точках M и N соответственно.
а) Докажите, что прямые AO1 и CO2 перпендикулярны.
б) Найдите площадь четырёхугольника MO1NO2, если AC = 20 и BC = 15.
3. В прямоугольную трапецию ABCD с прямым углом при вершине A и острым углом при вершине D вписана окружность с центром O. Прямая DO пересекает сторону AB в точке M, а прямая CO пересекает сторону AD в точке K.
а) Докажите, что
б) Найдите площадь треугольника AOM, если и
4. Хорды AD, BE и CF окружности делят друг друга на три равные части.
а) Докажите, что эти хорды равны.
б) Найдите площадь шестиугольника ABCDEF, если точки A, B, C, D, E, F последовательно расположены на окружности, а радиус окружности равен
5. Окружность с центром О1 касается оснований ВС и AD и боковой стороны АВ трапеции ABCD. Окружность с центром O2 касается сторон ВС, CD и AD. Известно, что АВ = 10, ВС = 9, CD = 30, AD = 39.
а) Докажите, что прямая О1О2 параллельна основаниям трапеции АВСD.
6. Треугольник ABC прямоугольный с прямым углом C. Проведена высота CH. На сторонах AC и BC соответственно отмечены точки M и N так, что угол MHN прямой.
а) Докажите, что треугольники и ABC подобны.
б) Найдите BN, если
7. На гипотенузе AB и на катетах BC и AC прямоугольного треугольника ABC отмечены точки M, N и K соответственно, причем прямая KN параллельна прямой AB и BM = BN = Точка P — середина отрезка KN.
а) Докажите, что четырехугольник BCPM — равнобедренная трапеция.
б) Найдите площадь треугольника ABC, если и
8. Две окружности с центрами O1 и O2 и радиусами 3 и 4 пересекаются в точках A и B. Через точку A проведена прямая MK пересекающая обе окружности в точках M и K, причем точка A находится между ними.
а) Докажите, что треугольники BMK и O1AO2 подобны.
б) Найдите расстояние от точки B до прямой MK, если O1O2 = 5, MK = 7.
9. Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второй раз пересекает первую окружность в точке A, а вторую — в точке D. Прямая, проходящая через точку Q параллельно AD, второй раз пересекает первую окружность в точке B, а вторую — в точке C.
а) Докажите, что четырёхугольник ABCD — параллелограмм.
б) Найдите отношение CP : PB, если радиус первой окружности втрое больше радиуса второй.
10. Дан равнобедренный треугольник ABC с основанием AC. Вписанная в него окружность с центром O касается боковой стороны BC в точке P и пересекает биссектрису угла B в точке Q.
а) Докажите, что отрезки PQ и OC параллельны.
б) Найдите площадь треугольника OBC, если точка O делит высоту BD треугольника в отношении BO : OD = 3 : 1 и AC = 2.
ПРОФИЛЬ ЕГЭ математика
1. Четырёхугольник ABCD вписан в окружность радиуса R = 8. Известно, что AB = BC = CD = 12.
а) Докажите,что прямые BC и AD параллельны.
2. В треугольнике MPK биссектриса угла K пересекает сторону MP в точке A. Окружность, описанная около треугольника AMK пересекает сторону PK в точке B.
а) Докажите, что треугольник ABM равнобедренный.
б) Найдите площадь треугольника ABM, если MK = 9, PK = 6, MP = 5.
3. К окружности с диаметром AB = 10 проведена касательная BC так что Прямая AC вторично пересекает окружность в точке D. Точка E диаметрально противоположна точке D. Прямые ED и BC пересекаются в точке F.
а) Докажите, что
б) Найдите площадь треугольника FBE.
4. Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C — вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны.
а) Докажите, что биссектрисы углов при вершинах B и C четырёхугольника ABCD, пересекаются на стороне AD.
б) Пусть N — точка пересечения этих биссектрис. Найдите площадь четырёхугольника ABCD, если известно, что BM : MC = 3 : 4, а площадь четырёхугольника, стороны которого лежат на прямых AM, DM, BN и CN, равна 24.
5. Дана окружность с центром в точке O и радиусом 5. Точка K делит диаметр AD в отношении 1 : 9, считая от точки D. Через точку K проведена хорда BC перпендикулярно диаметру AD. На меньшей дуге AB окружности взята точка M.
а) Докажите, что BM · CM 2 .
б) Найдите площадь четырёхугольника ACBM, если дополнительно известно, что площадь треугольника BCM равна 24.
6. Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H, точка Q — середина CD.
а) Докажите, что четырёхугольник DQOH — параллелограмм.
б) Найдите AD, если ∠ BAD = 75° и BC = 1.
7. В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E — на отрезке AB.
а) Докажите, что FH = 2DH.
б) Найдите площадь прямоугольника DEFH, если AB = 4.
8. Из вершины С прямого угла прямоугольного треугольника ABC проведена высота CH.
а) Докажите, что отношение площадей кругов, построенных на отрезках AH и BH соответственно как на диаметрах равно
б) Пусть точка O1 — центр окружности диаметра AH, вторично пересекающей отрезок AC в точке P, а точка O2 — центр окружности с диаметром BH, вторично пересекающей отрезок BC в точке Q. Найдите площадь четырёхугольника O1PQO2, если
9. Дана трапеция KLMN с основаниями KN и LM. Окружности, построенные на боковых сторонах KL и MN как на диаметрах, пересекаются в точках A и B.
а) Докажите, что средняя линия трапеции лежит на серединном перпендикуляре к отрезку AB.
б) Найдите AB, если известно, что боковые стороны трапеции равны 26 и 28, а средняя линия трапеции равна 15.
10. На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH. Из точки H на катеты опустили перпендикуляры HK и HE.
а) Докажите, что точки A, B, K и E лежат на одной окружности.
б) Найдите радиус этой окружности, если AB = 24, CH = 7.
ПРОФИЛЬ ЕГЭ математика
1. Четырёхугольник ABCD вписан в окружность. Диаметр CC1 перпендикулярен стороне AD и пересекает её в точке M, а диаметр DD1 перпендикулярен стороне AB и пересекает её в точке N.
а) Пусть AA1 также диаметр окружности. Докажите, что
б) Найдите углы четырехугольника ABCD, если
2. Прямая, проходящая через вершину В, прямоугольника ABCD, перпендикулярная диагонали АС и пересекает сторону АD в точке M, равноудаленной от вершин В и D.
а) Докажите, что BM и ВD делят угол В на три равных угла.
б) Найдите расстояние от точки пересечения диагоналей прямоугольника ABCD до прямой СМ, если
3. Отрезок CH — высота прямоугольного треугольника ABC с прямым углом C. На катетах AC и BC выбраны точки M и N соответственно такие, что
a) Докажите, что треугольник MNH подобен треугольнику ABC.
б) Найдите CN, если BC = 2, AC = 4, CM = 1.
4. Хорды AD, BE и CF окружности делят друг друга на три равные части.
а) Докажите, что эти хорды равны.
б) Найдите площадь шестиугольника ABCDEF, если точки A, B, C, D, E последовательно расположены на окружности, а радиус окружности равен
5. Дана трапеция с диагоналями равными 6 и 8. Сумма оснований равна 10.
а) Докажите, что диагонали перпендикулярны.
б) Найдите высоту трапеции.
6. Две окружности касаются внутренним образом в точке A, причем меньшая окружность проходит через через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P.
а) Докажите, что прямые PQ и BC параллельны.
б) Известно, что sinAOC = Прямые PC и AQ пересекаются в точке K. Найдите отношение QK:KA.
7. Окружность проходит через вершины B и C треугольника ABC и пересекает AB и AC в точках C1 и B1 соответственно.
а) Докажите, что треугольник ABC подобен треугольнику AB1C1.
б) Найдите радиус данной окружности, если ∠ A = 45°, B1C1 = 6 и площадь треугольника AB1C1 в восемь раз меньше площади четырёхугольника BCB1C1.
8. В четырёхугольнике ABCD противоположные стороны не параллельны. Диагонали четырёхугольника ABCD пересекаются в точке O под прямым углом и образуют четыре подобных треугольника, у каждого из которых одна из вершин — точка O.
а) Докажите, что около четырёхугольника ABCD можно описать окружность.
б) Найдите радиус вписанной окружности, если AC = 10, BD = 26.
9. На катетах AC и BC прямоугольного треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина гипотенузы AB, H — точка пересечения прямых CM и DK.
а) Докажите, что CMDK.
б) Найдите MH, если известно, что катеты треугольника ABC равны 30 и 40.
10. Окружность с центром О, вписанная в треугольник АВС, касается его сторон ВС, АВ и АС в точках K, L и М соответственно. Прямая КМ вторично пересекает в точке Р окружность радиуса АМ с центром А.
а) Докажите, что прямая АР параллельна прямой ВС.
б) Пусть AM = 3, CM = 2, Q — точка пересечения прямых КМ и АВ, а Т — такая точка на отрезке РQ, что Найдите QT.
🎥 Видео
№158. Через вершину В ромба ABCD проведена прямая ВМ, перпендикулярная к его плоскости. НайдитеСкачать
№486. В прямоугольнике ABCD найдите:Скачать
№150. Через вершину А прямоугольника ABCD проведена прямая АК, перпендикулярная к плоскостиСкачать
№130. Через вершину В квадрата ABCD проведена прямая ВМ. Известно, что ∠MBA = ∠MBC=90°, МВ =m, АВСкачать
№120. Через точку О пересечения диагоналей квадрата со стороной а проведена прямая ОКСкачать
Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
№131. В тетраэдре ABCD точка М — середина ребра ВС, АВ = AC, DB = DC. Докажите, что плоскостьСкачать
ОГЭ бе рекламы математика 2021 задача 25 1 и 2 вариантСкачать
№374. Биссектриса угла А параллелограмма ABCD пересекает сторону ВС в точке КСкачать
№152. Через вершину В квадрата ABCD проведена прямая BF, перпендикулярная к его плоскости. НайдитеСкачать
Геометрия Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точкахСкачать
№68. Точки М и N — середины ребер АВ и АС тетраэдра ABCD. Докажите, что прямая MN параллельнаСкачать
№159. Прямая ВМ перпендикулярна к плоскости прямоугольника ABCD. ДокажитеСкачать
ОГЭ 2022 Ященко 2 вариант ФИПИ школе полный разбор!Скачать
№771. В параллелограмме ABCD диагонали пересекаются в точке ОСкачать
№ 101-200 - Геометрия 9 класс МерзлякСкачать