В окружности с центром о проведены взаимно перпендикулярные хорды

В окружности с центром о проведены взаимно перпендикулярные хорды

Вопрос по геометрии:

В окружности с центром о проведены взаимно перпендикулярные хорда MK и MN,MK не равно MN,OC-перпендикуляр к хорде MK,OD-перпендикуляр к хорде MN.Укажиье верные утверждения:
А)OC=OD
Б)OD-серединный перпендикуляр к отрезку MN
В)KN=2OM
Г)MO-биссектриса ушла KMN

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

Б а в остальном не уверен что в г написано?

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

В окружности с центром O проведены две равные хорды KL и MN

В окружности с центром O проведены две равные хорды KL и MN. На эти хорды опущены перпендикуляры OH и OS. Докажите, что OH и OS равны.

Решение:
В окружности с центром о проведены взаимно перпендикулярные хорды

Треугольники ∆OKL = ∆OMN (по трем сторонам)
OK=OL=OM=OM радиусы
KL=MN по условию

OH и OS высоты в равных треугольниках ∆OKL и ∆OMN, следовательно, OH=OS.

В окружности с центром о проведены взаимно перпендикулярные хорды

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

В окружности с центром о проведены взаимно перпендикулярные хорды

В окружности с центром О проведены две хорды АВ и CD так, что центральные углы АОВ и СОD равны. На эти хорды опущены перпендикуляры ОК и OL. Докажите, что ОК и OL равны.

Треугольники АОВ и СОD равны по двум сторонам и углу между ними (AO = BO = CO = DO как радиусы окружности, ∠AOB = ∠COD по условию). Следовательно, высоты OK и OL равны как соответственные элементы равных треугольников.

Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что отрезки AB и IJ перпендикулярны.

Точка I равноудалена от A и B, поэтому она лежит на серединном перпендикуляре к отрезку AB. То же можно сказать и о J . Значит, IJ — серединный перпендикуляр к AB.

Задание 25 № 341422

Окружности с цен­тра­ми в точ­ках I и J пе­ре­се­ка­ют­ся в точ­ках A и B, причём точки I и J лежат по одну сто­ро­ну от пря­мой AB. Докажите, что от­рез­ки AB и IJ перпендикулярны.

Решение: IA и IB — радиусы окружности с центром в точке I => IA = IB => треугольник IAB — равнобедренный.

Проведем медиану IJ к стороне AB. Т.к. треугольник IAB — равнобедренный, то IJ также является высотой, проведённой AB => AB и IJ перпендикулярны, что и требовалось доказать.

В окружности с центром O проведены две равные хорды В окружности с центром о проведены взаимно перпендикулярные хордыи MN. На эти хорды опущены перпендикуляры OH и OS. Докажите, что OH и OS равны.

Проведем ОK, ON, OL, OM — радиусы. Треугольники KOL и MON равны по трем сторонам, тогда высоты OH и OS также равны как элементы равных треугольников. Что и требовалось доказать.

В окружности через середину O хорды AC проведена хорда BD так, что дуги AB и CD равны. Докажите, что O — середина хорды BD.

Вписанные углы ADB, CBD , ACB и DAC опираются на равные дуги, значит, они равны.

Получаем, что треугольники СOВ и AOD подобны по двум углам; их коэффициент подобия равен AO:OC. Поскольку AO = OC , эти треугольники равны, следовательно, BO = OD.

Окружности с центрами в точках O1 и O2 не имеют общих точек, и ни одна из них не лежит внутри другой. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении m:n. Докажите, что диаметры этих окружностей относятся как m:n.

Проведём построения и введём обозначения, как показано на рисунке. Пусть В окружности с центром о проведены взаимно перпендикулярные хордыРассмотрим треугольники В окружности с центром о проведены взаимно перпендикулярные хордыи В окружности с центром о проведены взаимно перпендикулярные хордыони прямоугольные, углы В окружности с центром о проведены взаимно перпендикулярные хордыи В окружности с центром о проведены взаимно перпендикулярные хордыравны как вертикальные, следовательно, треугольники подобны, откуда В окружности с центром о проведены взаимно перпендикулярные хорды

📺 Видео

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Окружность. 7 класс.Скачать

Окружность. 7 класс.

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)

6.30 - Геометрия 7-9 класс ПогореловСкачать

6.30 - Геометрия 7-9 класс Погорелов

Задача по геометрии из ОГЭ - пример решения задачиСкачать

Задача по геометрии из ОГЭ - пример решения задачи

Задача на нахождение длины хорды окружностиСкачать

Задача на нахождение длины хорды окружности

№645. Из концов диаметра АВ данной окружности проведены перпендикуляры АА1 и ВВ1 к касательнойСкачать

№645. Из концов диаметра АВ данной окружности проведены перпендикуляры АА1 и ВВ1 к касательной

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

ЗАДАЧА НА НАХОЖДЕНИЕ ДЛИНЫ ХОРДЫ, ПЕРПЕНДИКУЛЯРНОЙ ДИАМЕТРУ ОКРУЖНОСТИ. Задачи | ГЕОМЕТРИЯ 7 классСкачать

ЗАДАЧА НА НАХОЖДЕНИЕ ДЛИНЫ ХОРДЫ, ПЕРПЕНДИКУЛЯРНОЙ ДИАМЕТРУ ОКРУЖНОСТИ. Задачи | ГЕОМЕТРИЯ 7 класс

Геометрия Радиус ОС окружности с центром О делит хорду АВ пополам. Докажите, что касательнаяСкачать

Геометрия Радиус ОС окружности с центром О делит хорду АВ пополам. Докажите, что касательная

Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Геометрия 12-2. Четырехугольники. Задача 2Скачать

Геометрия 12-2. Четырехугольники. Задача 2

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВССкачать

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВС

Задание 16 (часть 1) | ОГЭ 2024 Математика | Окружность, круг и их элементыСкачать

Задание 16 (часть 1) | ОГЭ 2024 Математика | Окружность, круг и их элементы

ВСЕ ЗАДАЧИ ИЗ ОГЭ про углы / Центральные и вписанные углы / Разбор заданий из ОГЭ ТИП 16Скачать

ВСЕ ЗАДАЧИ ИЗ ОГЭ про углы / Центральные и вписанные углы / Разбор заданий из ОГЭ ТИП 16

задачи три признакаСкачать

задачи три признака

Математика ЕГЭ. В шаре проведены три перпендикулярных друг другу диаметраСкачать

Математика ЕГЭ. В шаре проведены три перпендикулярных друг другу диаметра

№648. Постройте касательную к окружности с центром О: а) параллельную данной прямой;Скачать

№648. Постройте касательную к окружности с центром О: а) параллельную данной прямой;
Поделиться или сохранить к себе: