Даны две окружности. Требуется найти все их общие касательные, т.е. все такие прямые, которые касаются обеих окружностей одновременно.
Описанный алгоритм будет работать также в случае, когда одна (или обе) окружности вырождаются в точки. Таким образом, этот алгоритм можно использовать также для нахождения касательных к окружности, проходящих через заданную точку.
- Количество общих касательных
- Алгоритм
- Реализация
- Две окружности на плоскости. Общие касательные к двум окружностям
- Взаимное расположение двух окружностей
- Формулы для длин общих касательных и общей хорды двух окружностей
- Доказательства формул для длин общих касательных и общей хорды двух окружностей
- Касательная к окружности
- Касательная к окружности, секущая и хорда — в чем разница
- Свойства касательной к окружности
- Задача
- Задача 1
- Задача 2
- Задача 1
- Задача 2
- Задача 1
- Задача 2
- 🎬 Видео
Видео:Математика без Ху!ни. Уравнение касательной.Скачать
Количество общих касательных
Сразу отметим, что мы не рассматриваем вырожденные случаи: когда окружности совпадают (в этом случае у них бесконечно много общих касательных), или одна окружность лежит внутри другой (в этом случае у них нет общих касательных, или, если окружности касаются, есть одна общая касательная).
В большинстве случаев, две окружности имеют четыре общих касательных.
Если окружности касаются, то у них будет три обших касательных, но это можно понимать как вырожденный случай: так, как будто две касательные совпали.
Более того, описанный ниже алгоритм будет работать и в случае, когда одна или обе окружности имеют нулевой радиус: в этом случае будет, соответственно, две или одна общая касательная.
Подводя итог, мы, за исключением описанных в начале случаев, всегда будем искать четыре касательные. В вырожденных случаях некоторые из них будут совпадать, однако тем не менее эти случаи также будут вписываться в общую картину.
Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать
Алгоритм
В целях простоты алгоритма, будем считать, не теряя общности, что центр первой окружности имеет координаты . (Если это не так, то этого можно добиться простым сдвигом всей картины, а после нахождения решения — сдвигом полученных прямых обратно.)
Обозначим через и радиусы первой и второй окружностей, а через — координаты центра второй окружности (точка отлична от начала координат, т.к. мы не рассматриваем случае, когда окружности совпадают, или одна окружность находится внутри другой).
Для решения задачи подойдём к ней чисто алгебраически. Нам требуется найти все прямые вида , которые лежат на расстоянии от начала координат, и на расстоянии от точки . Кроме того, наложим условие нормированности прямой: сумма квадратов коэффициентов и должна быть равна единице (это необходимо, иначе одной и той же прямой будет соответствовать бесконечно много представлений вида ). Итого получаем такую систему уравнений на искомые :
Чтобы избавиться от модулей, заметим, что всего есть четыре способа раскрыть модули в этой системе. Все эти способы можно рассмотреть общим случаем, если понимать раскрытие модуля как то, что коэффициент в правой части, возможно, умножается на .
Иными словами, мы переходим к такой системе:
Введя обозначения и , мы приходим к тому, что четыре раза должны решать систему:
Решение этой системы сводится к решению квадратного уравнения. Мы опустим все громоздкие выкладки, и сразу приведём готовый ответ:
Итого у нас получилось решений вместо . Однако легко понять, в каком месте возникают лишние решения: на самом деле, в последней системе достаточно брать только одно решение (например, первое). В самом деле, геометрический смысл того, что мы берём и , понятен: мы фактически перебираем, по какую сторону от каждой из окружностей будет прямая. Поэтому два способа, возникающие при решении последней системы, избыточны: достаточно выбрать одно из двух решений (только, конечно, во всех четырёх случаях надо выбрать одно и то же семейство решений).
Последнее, что мы ещё не рассмотрели — это как сдвигать прямые в том случае, когда первая окружность не находилась изначально в начале координат. Однако здесь всё просто: из линейности уравнения прямой следует, что от коэффициента надо отнять величину (где и — координаты первоначального центра первой окружности).
Видео:Внешняя касательная к двум окружностямСкачать
Реализация
Опишем сначала все необходимые структуры данных и другие вспомогательные определения:
Тогда само решение можно записать таким образом (где основная функция для вызова — вторая; а первая функция — вспомогательная):
Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать
Две окружности на плоскости.
Общие касательные к двум окружностям
Взаимное расположение двух окружностей |
Общие касательные к двум окружностям |
Формулы для длин общих касательных и общей хорды |
Доказательства формул для длин общих касательных и общей хорды |
Видео:Внутренняя касательная к двум окружностямСкачать
Взаимное расположение двух окружностей
Фигура | Рисунок | Свойства |
Две окружности на плоскости | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Расстояние между центрами окружностей больше суммы их радиусов | ||
Внешнее касание двух окружностей | ||
Расстояние между центрами окружностей равно сумме их радиусов | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов r1 – r2 лежит внутри другой | ||
Внутренняя касательная к двум окружностям | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Внешнее касание двух окружностей | ||
Внешняя касательная к двум окружностям | |
Внутренняя касательная к двум окружностям | |
Внутреннее касание двух окружностей | |
Окружности пересекаются в двух точках | |
Внешнее касание двух окружностей | |
Каждая из окружностей лежит вне другой | |
Внешняя касательная к двум окружностям | |||||||||||||||||||||
Внутренняя касательная к двум окружностям | |||||||||||||||||||||
Внутреннее касание двух окружностей | |||||||||||||||||||||
Окружности пересекаются в двух точках | |||||||||||||||||||||
Внешнее касание двух окружностей | |||||||||||||||||||||
Каждая из окружностей лежит вне другой | |||||||||||||||||||||
Фигура | Рисунок | Формула | ||||||||||||
Внешняя касательная к двум окружностям | ||||||||||||||
Внутренняя касательная к двум окружностям | ||||||||||||||
Общая хорда двух пересекающихся окружностей |
Внешняя касательная к двум окружностям | ||||
Внутренняя касательная к двум окружностям | ||||
Общая хорда двух пересекающихся окружностей | ||||
Внешняя касательная к двум окружностям |
Внутренняя касательная к двум окружностям |
Общая хорда двух пересекающихся окружностей |
Длина общей хорды двух окружностей вычисляется по формуле Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать Доказательства формул для длин общих касательных и общей хорды двух окружностейУтверждение 1 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d (рис.1), то длина общей внешней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 2 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей внутренней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 3 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей хорды AB этих окружностей вычисляется по формуле Доказательство . Для того, чтобы найти длину общей хорды AB двух окружностей, введём, как показано на рисунке 3, Видео:Касательные к окружностиСкачать Касательная к окружностиО чем эта статья: Видео:Уравнение касательнойСкачать Касательная к окружности, секущая и хорда — в чем разницаВ самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.
|