27878. Угол между хордой AB и касательной BC к окружности равен 32 0 . Найдите величину меньшей дуги, стягиваемой хордой AB. Ответ дайте в градусах.
Градусная мера искомой дуги соответствует углу АОВ. Угол между радиусом окружности и касательной проходящей через общую точку равен 90 0 , значит мы можем найти:
Треугольник ОВА равнобедренный, следовательно
Проект «МатематикаЕГЭ» — Решение задач из открытого банка заданий ЕГЭ
Видео:Угол между хордой и касательнойСкачать
Углы, связанные с окружностью
Вписанные и центральные углы |
Углы, образованные хордами, касательными и секущими |
Доказательства теорем об углах, связанных с окружностью |
Видео:Угол между хордой и касательной. 9 класс.Скачать
Вписанные и центральные углы
Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).
Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).
Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.
Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.
Видео:Угол между хордой и касательнойСкачать
Теоремы о вписанных и центральных углах
Фигура | Рисунок | Теорема | |||||||||||||||||||||||||||||||||||
Вписанный угол | |||||||||||||||||||||||||||||||||||||
Вписанный угол | Вписанные углы, опирающиеся на одну и ту же дугу равны. | ||||||||||||||||||||||||||||||||||||
Вписанный угол | Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды | ||||||||||||||||||||||||||||||||||||
Вписанный угол | Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды | ||||||||||||||||||||||||||||||||||||
Вписанный угол | Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр | ||||||||||||||||||||||||||||||||||||
Окружность, описанная около прямоугольного треугольника |
Вписанный угол | |||||||||||||||||||||||||||||||||
Окружность, описанная около прямоугольного треугольника | |||||||||||||||||||||||||||||||||
Фигура | Рисунок | Теорема | Формула |
Угол, образованный пересекающимися хордами | |||
Угол, образованный секущими, которые пересекаются вне круга | |||
Угол, образованный касательной и хордой, проходящей через точку касания | |||
Угол, образованный касательной и секущей | |||
Угол, образованный двумя касательными к окружности |
Угол, образованный пересекающимися хордами хордами |
Формула: |
Угол, образованный секущими секущими , которые пересекаются вне круга |
Формула: |
Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами |
Угол, образованный касательной и хордой хордой , проходящей через точку касания |
Формула: |
Угол, образованный касательной и секущей касательной и секущей |
Формула: |
Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами |
Угол, образованный двумя касательными касательными к окружности |
Формулы: |
Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами Видео:Найти угол между касательной и хордой. Полная версияСкачать Доказательства теорем об углах, связанных с окружностьюТеорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу. Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5). Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана. Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6). В этом случае справедливы равенства и теорема 1 в этом случае доказана. Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7). В этом случае справедливы равенства что и завершает доказательство теоремы 1. Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами. Доказательство . Рассмотрим рисунок 8. Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства что и требовалось доказать. Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла. Доказательство . Рассмотрим рисунок 9. Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства что и требовалось доказать. Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами. Доказательство . Рассмотрим рисунок 10. Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства что и требовалось доказать Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла. Доказательство . Рассмотрим рисунок 11. Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства что и требовалось доказать. Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами. Доказательство . Рассмотрим рисунок 12. Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство Видео:11 класс, 40 урок, Угол между касательной и хордойСкачать Угол между хордой и касательнойУгол между хордой и касательной к окружности, проведённой через конец хорды, равен половине дуги, лежащей внутри этого угла. Дано : окр. (O; R), AB — хорда, BC — касательная 1) Соединим центр окружности с концами хорды. Треугольник OAB — равнобедренный с основанием AB (так как OA=OB как радиусы). 3) Градусная мера дуги AB равна градусной мере центрального угла AOB.
Что и требовалось доказать . Треугольник ABC вписан в окружность. Через вершину B проведена касательная к окружности, а из точки A на касательную опущен перпендикуляр AF. Найти ∠ACB, если ∠FAB=27º. Дано : ∆ABC, окр. (O; R) — описанная, 1) Рассмотрим ∆ABF. ∠AFB=90º. Так как сумма острых углов прямоугольного треугольника равна 90º, то ∠ABF=90º-∠FAB=90-27=63º. 2) ∠ABF — угол между касательной BF и хордой AB. Значит, он равен половине дуги AB: 3) ∠AСB — вписанный угол, опирающийся на дугу AB. Следовательно он также равен её половине: 💥 ВидеоГеометрия 11 класс. Угол между касательной и хордойСкачать Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать Угол между хордой и касательнойСкачать Секретная теорема из учебника геометрииСкачать Угол между касательной и хордойСкачать Всё про углы в окружности. Геометрия | МатематикаСкачать Окружность..Угол между касательной и хордой.Скачать 8 класс, 32 урок, Касательная к окружностиСкачать #87. Задание 6: хорда, секущая, касательнаяСкачать Окружность.Отношение между хордой и касательной.Скачать Угол между касательной и хордой.Скачать Задача 6 №27878 ЕГЭ по математике. Урок 119Скачать Угол между секущимиСкачать Углы в окружности. Между касательной и хордой. Урок 21. Геометрия 11 классСкачать |