Угол 45 градусов вписанный в окружность

Углы, связанные с окружностью
Угол 45 градусов вписанный в окружностьВписанные и центральные углы
Угол 45 градусов вписанный в окружностьУглы, образованные хордами, касательными и секущими
Угол 45 градусов вписанный в окружностьДоказательства теорем об углах, связанных с окружностью

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Угол 45 градусов вписанный в окружность

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Угол 45 градусов вписанный в окружность

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Найти вписанные в окружность углы (bezbotvy)Скачать

Найти вписанные в окружность углы (bezbotvy)

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголУгол 45 градусов вписанный в окружность
Вписанный уголУгол 45 градусов вписанный в окружностьВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголУгол 45 градусов вписанный в окружностьВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголУгол 45 градусов вписанный в окружностьДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголУгол 45 градусов вписанный в окружностьВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаУгол 45 градусов вписанный в окружность

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Угол 45 градусов вписанный в окружность

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Угол 45 градусов вписанный в окружность

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Угол 45 градусов вписанный в окружность

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Угол 45 градусов вписанный в окружность

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Угол 45 градусов вписанный в окружность

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Угол 45 градусов вписанный в окружность

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиУгол 45 градусов вписанный в окружностьУгол 45 градусов вписанный в окружность
Угол, образованный секущими, которые пересекаются вне кругаУгол 45 градусов вписанный в окружностьУгол 45 градусов вписанный в окружность
Угол, образованный касательной и хордой, проходящей через точку касанияУгол 45 градусов вписанный в окружностьУгол 45 градусов вписанный в окружность
Угол, образованный касательной и секущейУгол 45 градусов вписанный в окружностьУгол 45 градусов вписанный в окружность
Угол, образованный двумя касательными к окружностиУгол 45 градусов вписанный в окружностьУгол 45 градусов вписанный в окружность

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Угол, образованный пересекающимися хордами хордами
Угол 45 градусов вписанный в окружность
Формула: Угол 45 градусов вписанный в окружность
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Угол 45 градусов вписанный в окружность

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Угол 45 градусов вписанный в окружность
Формула: Угол 45 градусов вписанный в окружность
Угол, образованный касательной и секущей касательной и секущей
Формула: Угол 45 градусов вписанный в окружность

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Угол 45 градусов вписанный в окружность

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:2160 Центральный угол на 45 градусов больше острого вписанного углаСкачать

2160 Центральный угол на 45 градусов больше острого вписанного угла

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Угол 45 градусов вписанный в окружность

В этом случае справедливы равенства

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Угол 45 градусов вписанный в окружность

В этом случае справедливы равенства

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Угол 45 градусов вписанный в окружность

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Угол 45 градусов вписанный в окружность

Угол 45 градусов вписанный в окружность

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Углы, вписанные в окружность. Практическая часть. 9 класс.Скачать

Углы, вписанные в окружность. Практическая часть. 9 класс.

Центральные и вписанные углы

Угол 45 градусов вписанный в окружность

О чем эта статья:

Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Угол 45 градусов вписанный в окружность

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Угол 45 градусов вписанный в окружность

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Углы, вписанные в окружность. Практическая часть. 9 класс.Скачать

Углы, вписанные в окружность. Практическая часть. 9 класс.

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Угол 45 градусов вписанный в окружность

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Угол 45 градусов вписанный в окружность

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Угол 45 градусов вписанный в окружность

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Угол 45 градусов вписанный в окружность

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Угол 45 градусов вписанный в окружность

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Угол 45 градусов вписанный в окружность

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Угол 45 градусов вписанный в окружность

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Угол 45 градусов вписанный в окружность

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Угол 45 градусов вписанный в окружность

ㄥBAC + ㄥBDC = 180°

Видео:Задача 6 №27862 ЕГЭ по математике. Урок 105Скачать

Задача 6 №27862 ЕГЭ по математике. Урок 105

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Угол 45 градусов вписанный в окружность

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Угол 45 градусов вписанный в окружность

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Угол 45 градусов вписанный в окружность

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Вписанный в окружность угол ВАС, равный 45°, опирается на дугу ВС. Радиус окружности равен а. Найдите площадь треугольника ВОС (О — центр окружности).

Видео:2041 четырёхугольник ABCD вписан в окружность угол abd равен 38 угол cаd равен 54 Найдите угол ABCСкачать

2041 четырёхугольник ABCD вписан в окружность угол abd равен 38 угол cаd равен 54 Найдите угол ABC

Ваш ответ

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

решение вопроса

Видео:Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,909
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

🎬 Видео

Построение 8 угольника циркулемСкачать

Построение 8 угольника циркулем

ЗАДАЧА С ТАЙСОНОМ!Скачать

ЗАДАЧА С ТАЙСОНОМ!

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Задача 6 №27913 ЕГЭ по математике. Урок 131Скачать

Задача 6 №27913 ЕГЭ по математике. Урок 131

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

2023 На окружности с центром в точке О отмечены точки А и Б так что угол аоб равен 45Скачать

2023 На окружности с центром в точке О отмечены точки А и Б так что угол аоб равен 45

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол
Поделиться или сохранить к себе: