Углы опирающиеся на хорду окружности

Углы, связанные с окружностью
Углы опирающиеся на хорду окружностиВписанные и центральные углы
Углы опирающиеся на хорду окружностиУглы, образованные хордами, касательными и секущими
Углы опирающиеся на хорду окружностиДоказательства теорем об углах, связанных с окружностью

Видео:Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Углы опирающиеся на хорду окружности

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Углы опирающиеся на хорду окружности

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголУглы опирающиеся на хорду окружности
Вписанный уголУглы опирающиеся на хорду окружностиВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголУглы опирающиеся на хорду окружностиВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголУглы опирающиеся на хорду окружностиДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголУглы опирающиеся на хорду окружностиВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаУглы опирающиеся на хорду окружности

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Углы опирающиеся на хорду окружности

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Углы опирающиеся на хорду окружности

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Углы опирающиеся на хорду окружности

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Углы опирающиеся на хорду окружности

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Углы опирающиеся на хорду окружности

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Углы опирающиеся на хорду окружности

Видео:Вписанный угол, опирающийся на хорду, равную радиусу окружностиСкачать

Вписанный угол, опирающийся на хорду, равную радиусу окружности

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиУглы опирающиеся на хорду окружностиУглы опирающиеся на хорду окружности
Угол, образованный секущими, которые пересекаются вне кругаУглы опирающиеся на хорду окружностиУглы опирающиеся на хорду окружности
Угол, образованный касательной и хордой, проходящей через точку касанияУглы опирающиеся на хорду окружностиУглы опирающиеся на хорду окружности
Угол, образованный касательной и секущейУглы опирающиеся на хорду окружностиУглы опирающиеся на хорду окружности
Угол, образованный двумя касательными к окружностиУглы опирающиеся на хорду окружностиУглы опирающиеся на хорду окружности

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Угол, образованный пересекающимися хордами хордами
Углы опирающиеся на хорду окружности
Формула: Углы опирающиеся на хорду окружности
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Углы опирающиеся на хорду окружности

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Углы опирающиеся на хорду окружности
Формула: Углы опирающиеся на хорду окружности
Угол, образованный касательной и секущей касательной и секущей
Формула: Углы опирающиеся на хорду окружности

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Углы опирающиеся на хорду окружности

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Вписанный угол, опирающийся на хорду, равную r окрСкачать

Вписанный угол, опирающийся на хорду, равную r окр

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Углы опирающиеся на хорду окружности

В этом случае справедливы равенства

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Углы опирающиеся на хорду окружности

В этом случае справедливы равенства

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Углы опирающиеся на хорду окружности

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Углы опирающиеся на хорду окружности

Углы опирающиеся на хорду окружности

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Центральные и вписанные углы

Углы опирающиеся на хорду окружности

О чем эта статья:

Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Углы опирающиеся на хорду окружности

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Углы опирающиеся на хорду окружности

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. НайдитеСкачать

№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. Найдите

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Углы опирающиеся на хорду окружности

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Углы опирающиеся на хорду окружности

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Углы опирающиеся на хорду окружности

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Углы опирающиеся на хорду окружности

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Углы опирающиеся на хорду окружности

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Углы опирающиеся на хорду окружности

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Углы опирающиеся на хорду окружности

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Углы опирающиеся на хорду окружности

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Углы опирающиеся на хорду окружности

ㄥBAC + ㄥBDC = 180°

Видео:Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности?Скачать

Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности?

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Углы опирающиеся на хорду окружности

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Углы опирающиеся на хорду окружности

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Углы опирающиеся на хорду окружности

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:ОГЭ-2024 МАТЕМАТИКА. ЯЩЕНКО 36 ВАРИАНТОВ. ВАРИАНТ 11 ЧАСТЬ-2Скачать

ОГЭ-2024 МАТЕМАТИКА. ЯЩЕНКО 36 ВАРИАНТОВ. ВАРИАНТ 11 ЧАСТЬ-2

Окружность. Центральный и вписанный угол

Центральный угол — это угол, вершина которого находится в центре окружности.
Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее.

На рисунке — центральные и вписанные углы, а также их важнейшие свойства.

Углы опирающиеся на хорду окружности
Итак, величина центрального угла равна угловой величине дуги, на которую он опирается.
Значит, центральный угол величиной в градусов будет опираться на дугу, равную , то есть круга. Центральный угол, равный , опирается на дугу в градусов, то есть на шестую часть круга.

Величина вписанного угла в два раза меньше центрального, опирающегося на ту же дугу.

Также для решения задач нам понадобится понятие «хорда».

Углы опирающиеся на хорду окружности
Равные центральные углы опираются на равные хорды.

1 . Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Вписанный угол, опирающийся на диаметр, — прямой.

2 . Центральный угол на больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.

Пусть центральный угол равен , а вписанный угол, опирающийся на ту же дугу, равен .

Углы опирающиеся на хорду окружности

Мы знаем, что .
Отсюда ,
.

Ты нашел то, что искал? Поделись с друзьями!

3 . Радиус окружности равен . Найдите величину тупого вписанного угла, опирающегося на хорду, равную . Ответ дайте в градусах.

Углы опирающиеся на хорду окружности

Пусть хорда равна . Тупой вписанный угол, опирающийся на эту хорду, обозначим .
В треугольнике стороны и равны , сторона равна . Нам уже встречались такие треугольники. Очевидно, что треугольник — прямоугольный и равнобедренный, то есть угол равен .
Тогда дуга равна , а дуга равна .
Вписанный угол опирается на дугу и равен половине угловой величины этой дуги, то есть .

4 . Хорда делит окружность на две части, градусные величины которых относятся как . Под каким углом видна эта хорда из точки , принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Углы опирающиеся на хорду окружности

Главное в этой задаче — правильный чертеж и понимание условия. Как вы понимаете вопрос: «Под каким углом хорда видна из точки ?»
Представьте, что вы сидите в точке и вам необходимо видеть всё, что происходит на хорде . Так, как будто хорда — это экран в кинотеатре 🙂
Очевидно, что найти нужно угол .
Сумма двух дуг, на которые хорда делит окружность, равна , то есть

Отсюда , и тогда вписанный угол опирается на дугу, равную .
Величина вписанного угла равна половине угловой величины дуги, на которую он опирается, значит, угол равен .

🌟 Видео

Задача 6 №27857 ЕГЭ по математике. Урок 103Скачать

Задача 6 №27857 ЕГЭ по математике. Урок 103

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

🔴 Найдите вписанный угол, опирающийся на дугу ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите вписанный угол, опирающийся на дугу ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

2166 Найдите вписанный угол опирающийся на дугу которая составляет 20 окружностиСкачать

2166 Найдите вписанный угол опирающийся на дугу которая составляет 20 окружности

Задача 6 №27862 ЕГЭ по математике. Урок 105Скачать

Задача 6 №27862 ЕГЭ по математике. Урок 105

Окружность. Длина хорды. Теорема синусов.Скачать

Окружность. Длина хорды. Теорема синусов.

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

2163 Найдите вписанный угол опирающийся на дугу которая составляет 5/36 окружностиСкачать

2163 Найдите вписанный угол опирающийся на дугу которая составляет 5/36 окружности

Угол между хордой и касательнойСкачать

Угол между хордой и касательной
Поделиться или сохранить к себе: