Центральный угол окружности равен 100

Центральный угол окружности равен 100

В окружности с центром O AC и BD — диаметры. Центральный угол AOD равен 100°. Найдите вписанный угол ACB. Ответ дайте в градусах.

Смежные углы BOA и AOD образуют развёрнутый угол, поэтому их сумма равна 180°, откуда ∠AOB = 180° − 100° = 80°. Угол AOB — центральный, следовательно, он равен дуге, на которую опирается, угол ACB — вписанный, следовательно, он равен половине дуги, на которую опирается. Поскольку углы AOB и ACB опираются на одну и ту же дугу, угол ACB равен половине угла AOB, то есть 40°.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Центральные и вписанные углы

Центральный угол окружности равен 100

О чем эта статья:

Видео:Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Центральный угол окружности равен 100

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Центральный угол окружности равен 100

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Центральный угол в окружностиСкачать

Центральный угол в окружности

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Центральный угол окружности равен 100

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Центральный угол окружности равен 100

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Центральный угол окружности равен 100

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Центральный угол окружности равен 100

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Центральный угол окружности равен 100

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Центральный угол окружности равен 100

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Центральный угол окружности равен 100

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Центральный угол окружности равен 100

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Центральный угол окружности равен 100

ㄥBAC + ㄥBDC = 180°

Видео:Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Центральный угол окружности равен 100

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Центральный угол окружности равен 100

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Центральный угол окружности равен 100

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:Решение задач на тему центральные и вписанные углы.Скачать

Решение задач на тему центральные и вписанные углы.

Углы, связанные с окружностью

Центральный угол окружности равен 100Вписанные и центральные углы
Центральный угол окружности равен 100Углы, образованные хордами, касательными и секущими
Центральный угол окружности равен 100Доказательства теорем об углах, связанных с окружностью

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Центральный угол окружности равен 100

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Центральный угол окружности равен 100

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголЦентральный угол окружности равен 100
Вписанный уголЦентральный угол окружности равен 100Вписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголЦентральный угол окружности равен 100Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголЦентральный угол окружности равен 100Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголЦентральный угол окружности равен 100Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаЦентральный угол окружности равен 100

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Центральный угол окружности равен 100

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Центральный угол окружности равен 100

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Центральный угол окружности равен 100

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Центральный угол окружности равен 100

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Центральный угол окружности равен 100

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Центральный угол окружности равен 100

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиЦентральный угол окружности равен 100Центральный угол окружности равен 100
Угол, образованный секущими, которые пересекаются вне кругаЦентральный угол окружности равен 100Центральный угол окружности равен 100
Угол, образованный касательной и хордой, проходящей через точку касанияЦентральный угол окружности равен 100Центральный угол окружности равен 100
Угол, образованный касательной и секущейЦентральный угол окружности равен 100Центральный угол окружности равен 100
Угол, образованный двумя касательными к окружностиЦентральный угол окружности равен 100Центральный угол окружности равен 100

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Угол, образованный пересекающимися хордами хордами
Центральный угол окружности равен 100
Формула: Центральный угол окружности равен 100
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Центральный угол окружности равен 100

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Центральный угол окружности равен 100
Формула: Центральный угол окружности равен 100
Угол, образованный касательной и секущей касательной и секущей
Формула: Центральный угол окружности равен 100

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Центральный угол окружности равен 100

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Центральный угол окружности равен 100

В этом случае справедливы равенства

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Центральный угол окружности равен 100

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Центральный угол окружности равен 100

В этом случае справедливы равенства

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Центральный угол окружности равен 100

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Центральный угол окружности равен 100

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Центральный угол окружности равен 100

Центральный угол окружности равен 100

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Центральный угол окружности равен 100

Центральный угол окружности равен 100

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Центральный угол окружности равен 100

Центральный угол окружности равен 100

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Центральный угол окружности равен 100

Центральный угол окружности равен 100

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Центральный угол окружности равен 100

Центральный угол окружности равен 100

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

📸 Видео

Вписанный угол, опирающийся на хорду, равную радиусу окружностиСкачать

Вписанный угол, опирающийся на хорду, равную радиусу окружности

Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)

Вписанный угол равен половине центрального углаСкачать

Вписанный угол равен половине центрального угла

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Окружность описана около равнобедренного треугольника. Найти центральный уголСкачать

Окружность описана около равнобедренного треугольника.  Найти центральный угол

8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

Как решать задачи с окружностью?| Геометрия ОГЭСкачать

Как решать задачи с окружностью?| Геометрия ОГЭ

2119 периметр прямоугольной трапеции описанной около окружности равен 100 её большаяСкачать

2119 периметр прямоугольной трапеции описанной около окружности равен 100 её большая

Вписанные углы в окружностиСкачать

Вписанные углы в окружности

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол
Поделиться или сохранить к себе: