Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов
Сертификат и скидка на обучение каждому участнику
по геометрии для 8 класса
1.Центр вписанной в треугольник окружности совпадает с точкой пересечения его …
в) серединных перпендикуляров.
2. Центр вписанной в треугольник окружности равноудален от …
в) вершин треугольника.
3. Центр вписанной в треугольник окружности является точкой пересечения его медиан. Этот треугольник…
4. Окружность называется вписанной в многоугольник, если…
а) все его стороны касаются окружности;
б) все его вершины лежат на окружности;
в) все его стороны имеют общие точки с окружностью.
по геометрии для 8 класса
1. Радиус вписанной в треугольник окружности равен расстоянию от центра окружности до …
а) сторон треугольника;
б) вершин треугольника;
в) углов треугольника.
2. Центр вписанной в равнобедренный треугольник окружности может лежать…
а) на любой из его высот;
б) на любой из его медиан;
в) на любом из его серединных перпендикуляров.
3. Центр вписанной в треугольник окружности является точкой пересечения его биссектрис. Этот треугольник может быть…
б) только равносторонним;
в) только прямоугольным.
4. Многоугольник называется описанным около окружности, если …
а) окружность имеет общие точки с его сторонами;
б) окружность проходит через его вершины;
в) окружность является касающейся всех его сторон.
Курс повышения квалификации
- Дистанционное обучение как современный формат преподавания
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Математика: теория и методика преподавания в образовательной организации
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- Треугольник: вписанная и описанная окружности
- Окружность, вписанная в треугольник
- Окружность, описанная около треугольника
- Центр вписанной в треугольник окружности
- 🎥 Видео
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 988 человек из 78 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 310 человек из 68 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 673 человека из 75 регионов
Ищем педагогов в команду «Инфоурок»
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Дистанционные курсы для педагогов
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 538 638 материалов в базе
«Актуальность создания школьных служб примирения/медиации в образовательных организациях»
Свидетельство и скидка на обучение каждому участнику
Другие материалы
- 17.03.2017
- 1464
- 21
- 17.03.2017
- 1185
- 0
- 17.03.2017
- 5050
- 16
- 17.03.2017
- 795
- 2
- 17.03.2017
- 380
- 0
- 17.03.2017
- 266
- 0
- 17.03.2017
- 302
- 0
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 17.03.2017 6657
- DOCX 13.1 кбайт
- 11 скачиваний
- Рейтинг: 5 из 5
- Оцените материал:
Настоящий материал опубликован пользователем Еленкина Алена Викторовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 5 лет
- Подписчики: 10
- Всего просмотров: 47473
- Всего материалов: 19
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В Госдуме предложили доплачивать учителям за работу в классах, где выявлен ковид
Время чтения: 1 минута
Полный перевод школ на дистанционное обучение не планируется
Время чтения: 1 минута
Минобрнауки учредит стипендию для студентов — победителей международных олимпиад
Время чтения: 1 минута
В Омской области школы и колледжи перейдут на дистанционное обучение с 7 по 21 февраля
Время чтения: 1 минута
В России классы будут переводить на дистант, если заболели 20% детей
Время чтения: 1 минута
В Курганской области школьников переведут на дистанционное обучение с 4 февраля
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Видео:№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать
Треугольник: вписанная и описанная окружности
Видео:Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать
Окружность, вписанная в треугольник
Окружность называется вписанной в треугольник, если она касается всех его сторон.
Видео:#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать
Окружность, описанная около треугольника
Окружность, проходящая через все вершины треугольника, называется описанной около треугольника окружностью.
- Центр окружности, описанной около треугольника, является точкой пересечения серединных перпендикуляров сторон треугольника;
- Радиус описанной окружности можно найти из теоремы синусов : a sin α = b sin β = c sin γ = 2 R frac=frac=frac=2R sin α a = sin β b = sin γ c = 2 R .
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Центр вписанной в треугольник окружности
Где лежит центр вписанной в треугольник окружности? Что можно сказать о центре окружности, вписанной в многоугольник?
Центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника.
O — точка пересечения биссектрис треугольника ABC.
окр. (O; r) — вписанная.
O — точка пересечения биссектрис ∆ ABC.
Обозначим точки касания вписанной в треугольник окружности со сторонами AC, BC и AB соответственно M, K. F.
Соединим отрезками центр окружности с точками A, M и F.
(как радиусы, проведенные в точки касания). Следовательно, треугольники AOF и AOM — прямоугольные.
У них общая гипотенуза AO, катеты OF=OM (как радиусы).
Следовательно, треугольники AOF и AOM равны (по катету и гипотенузе).
Из равенства треугольников следует равенство соответствующих углов: ∠OAF=∠OAM.
Значит, точка O лежит на биссектрисе треугольника, проведенной из вершины A.
Аналогично из равенства треугольников BOF и BOK, COM и COK доказывается, что точка O лежит на биссектрисах треугольника ABC, проведенных из вершин B и C.
Следовательно, центр вписанной в треугольник окружности лежит в точке пересечении биссектрис этого треугольника.
Что и требовалось доказать.
Доказательство теоремы можно основать непосредственно на свойстве биссектрисы угла.
1) OM=OF=OK (как радиусы),
2) OM⊥AC, OM⊥AB, OK⊥BC (как радиусы, проведённые в точку касания).
Значит точка O равноудалена от сторон углов BAC, ABC и ACB.
Так как любая точка, лежащая внутри неразвёрнутого угла и равноудалённая от сторон этого угла, лежит на его биссектрисе, то AO, BO и CO — биссектрисы треугольника ABC, O — точка их пересечения.
Аналогично, центр вписанной в многоугольник окружности (если в него можно вписать окружность) лежит в точке пересечения биссектрис этого многоугольника.
🎥 Видео
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
ГЕОМЕТРИЯ 8 класс: 4 замечательные точкиСкачать
Построить описанную окружность (Задача 1)Скачать
Тема 7. Вписанные и описанные окружности треугольникаСкачать
ВСЕ свойства ортоцентра для №16 на ЕГЭ 2023 по математикеСкачать
Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать
ОГЭ, геометрия, задачи повышенной сложности. Часть 3Скачать
8 класс, 38 урок, Вписанная окружностьСкачать
Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Почему геометрия — это красиво?Скачать
Вписанная окружностьСкачать
Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать