Центр описанной окружности треугольника лежит на медиане

726 Центр описанной около треугольника окружности лежит на медиане. Докажите, что этот треугольник либо равнобедренный, либо прямоугольный.

Центр описанной окружности треугольника лежит на медиане

Центр описанной окружности треугольника лежит на медиане

Доказать: ΔABC -равнобедренный или прямоугольный

Центр окружности, описанной около треугольника, лежит на

пересечении серединных перпендикуляров к сторонам ΔАВС. Т.к.

О ∈ медиане, значит медиана и серединный перпендикуляр совпадают, т.е. треугольник равносторонний или равнобедренный (одна из медиан является серединным перпен-

дикуляром к основанию).

О — лежит на гипотенузе прямоугольного треугольника ВО = АО = ОС.

Центр описанной окружности треугольника лежит на медиане Решебник по геометрии за 8 класс (Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина, 2005 год),
задача №726
к главе «Глава VIII. Окружность. Дополнительные задачи».

Содержание
  1. Центр описанной около треугольника окружности лежит на медиане. Докажите, что этот треугольник либо равнобедренный, либо прямоугольный.
  2. Ваш ответ
  3. решение вопроса
  4. Похожие вопросы
  5. Центр описанной окружности лежит на медиане
  6. 726 Центр описанной около треугольника окружности лежит на медиане. Докажите, что этот треугольник либо равнобедренный, либо прямоугольный.
  7. Окружность, описанная около треугольника. Треугольник, вписанный в окружность. Теорема синусов
  8. Серединный перпендикуляр к отрезку
  9. Окружность, описанная около треугольника
  10. Свойства описанной около треугольника окружности. Теорема синусов
  11. Доказательства теорем о свойствах описанной около треугольника окружности
  12. Центр описанной около треугольника окружности лежит на медиане. Докажите, что этот треугольник либо равнобедренный, либо прямоугольный.
  13. Ваш ответ
  14. решение вопроса
  15. Похожие вопросы
  16. 📽️ Видео

Видео:Центр описанной окружности.Скачать

Центр описанной окружности.

Центр описанной около треугольника окружности лежит на медиане. Докажите, что этот треугольник либо равнобедренный, либо прямоугольный.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Ваш ответ

Видео:Где лежит центр описанной окружности? 1 задание ЕГЭ ПрофильСкачать

Где лежит центр описанной окружности? 1 задание ЕГЭ Профиль

решение вопроса

Видео:Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Похожие вопросы

  • Все категории
  • экономические 43,279
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,962
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Центр описанной окружности лежит на медиане

Видео:Все факты о медиане треугольника для ЕГЭСкачать

Все факты о медиане треугольника для ЕГЭ

726 Центр описанной около треугольника окружности лежит на медиане. Докажите, что этот треугольник либо равнобедренный, либо прямоугольный.

Центр описанной окружности треугольника лежит на медиане

Центр описанной окружности треугольника лежит на медиане

Доказать: ΔABC -равнобедренный или прямоугольный

Центр окружности, описанной около треугольника, лежит на

пересечении серединных перпендикуляров к сторонам ΔАВС. Т.к.

О ∈ медиане, значит медиана и серединный перпендикуляр совпадают, т.е. треугольник равносторонний или равнобедренный (одна из медиан является серединным перпен-

дикуляром к основанию).

О — лежит на гипотенузе прямоугольного треугольника ВО = АО = ОС.

Центр описанной окружности треугольника лежит на медианеРешебник по геометрии за 8 класс (Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина, 2005 год),
задача №726
к главе «Глава VIII. Окружность. Дополнительные задачи».

Видео:Описанная и вписанная окружности треугольникаСкачать

Описанная и вписанная окружности треугольника

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Центр описанной окружности треугольника лежит на медианеСерединный перпендикуляр к отрезку
Центр описанной окружности треугольника лежит на медианеОкружность описанная около треугольника
Центр описанной окружности треугольника лежит на медианеСвойства описанной около треугольника окружности. Теорема синусов
Центр описанной окружности треугольника лежит на медианеДоказательства теорем о свойствах описанной около треугольника окружности

Центр описанной окружности треугольника лежит на медиане

Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Центр описанной окружности треугольника лежит на медиане

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Центр описанной окружности треугольника лежит на медиане

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Центр описанной окружности треугольника лежит на медиане

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Центр описанной окружности треугольника лежит на медиане

Центр описанной окружности треугольника лежит на медиане

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Центр описанной окружности треугольника лежит на медиане

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Центр описанной окружности треугольника лежит на медиане

Центр описанной окружности треугольника лежит на медиане

Полученное противоречие и завершает доказательство теоремы 2

Видео:Свойство окружности, описанной около равнобедренного треугольникаСкачать

Свойство окружности, описанной около равнобедренного треугольника

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Центр описанной окружности треугольника лежит на медиане

Видео:ЕГЭ 2024 по математике. №1,17 Медиана, биссектриса, высота, серединный перпендикулярСкачать

ЕГЭ 2024 по математике. №1,17 Медиана, биссектриса, высота, серединный перпендикуляр

Свойства описанной около треугольника окружности. Теорема синусов

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Центр описанной окружности треугольника лежит на медианеВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаЦентр описанной окружности треугольника лежит на медианеОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиЦентр описанной окружности треугольника лежит на медианеЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиЦентр описанной окружности треугольника лежит на медианеЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовЦентр описанной окружности треугольника лежит на медиане

Для любого треугольника справедливы равенства (теорема синусов):

Центр описанной окружности треугольника лежит на медиане,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаЦентр описанной окружности треугольника лежит на медиане

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиЦентр описанной окружности треугольника лежит на медиане

Для любого треугольника справедливо равенство:

Центр описанной окружности треугольника лежит на медиане

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Серединные перпендикуляры к сторонам треугольника
Центр описанной окружности треугольника лежит на медиане

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаЦентр описанной окружности треугольника лежит на медиане

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиЦентр описанной окружности треугольника лежит на медиане

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиЦентр описанной окружности треугольника лежит на медиане

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиЦентр описанной окружности треугольника лежит на медиане

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовЦентр описанной окружности треугольника лежит на медиане

Для любого треугольника справедливы равенства (теорема синусов):

Центр описанной окружности треугольника лежит на медиане,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаЦентр описанной окружности треугольника лежит на медиане

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиЦентр описанной окружности треугольника лежит на медиане

Для любого треугольника справедливо равенство:

Центр описанной окружности треугольника лежит на медиане

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Центр описанной окружности треугольника лежит на медиане

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Центр описанной окружности треугольника лежит на медиане

Центр описанной окружности треугольника лежит на медиане.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Центр описанной окружности треугольника лежит на медиане

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Медиана, высота и биссектриса треугольника. Центроид, инцентр, ортоцентр. Геометрия 7 класс.Скачать

Медиана, высота и биссектриса треугольника. Центроид, инцентр, ортоцентр. Геометрия 7 класс.

Центр описанной около треугольника окружности лежит на медиане. Докажите, что этот треугольник либо равнобедренный, либо прямоугольный.

Видео:Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

Ваш ответ

Видео:ОГЭ | Математика | Задача с медианой треугольника #огэ #математика #репетитор #геометрияСкачать

ОГЭ | Математика | Задача с медианой треугольника #огэ #математика #репетитор #геометрия

решение вопроса

Видео:С4,ЕГЭ-решение задачи-Центр пересечения медиан,центр вписанной окружности на прямой,параллельной BCСкачать

С4,ЕГЭ-решение задачи-Центр пересечения медиан,центр вписанной окружности на прямой,параллельной BC

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,882
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

📽️ Видео

№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольникСкачать

№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольник

Радиус описанной окружностиСкачать

Радиус описанной окружности

Задание 16 ОГЭ 2022 математика | Точка пересечения медиан треугольникаСкачать

Задание 16 ОГЭ 2022 математика | Точка пересечения медиан треугольника

2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

2038 центр окружности описанной около треугольника ABC лежит на стороне AB

8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.
Поделиться или сохранить к себе: