Центр окружности в остроугольном треугольнике

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Центр окружности в остроугольном треугольникеСерединный перпендикуляр к отрезку
Центр окружности в остроугольном треугольникеОкружность описанная около треугольника
Центр окружности в остроугольном треугольникеСвойства описанной около треугольника окружности. Теорема синусов
Центр окружности в остроугольном треугольникеДоказательства теорем о свойствах описанной около треугольника окружности

Центр окружности в остроугольном треугольнике

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Центр окружности в остроугольном треугольнике

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Центр окружности в остроугольном треугольнике

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Центр окружности в остроугольном треугольнике

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Центр окружности в остроугольном треугольнике

Центр окружности в остроугольном треугольнике

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Центр окружности в остроугольном треугольнике

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Центр окружности в остроугольном треугольнике

Центр окружности в остроугольном треугольнике

Полученное противоречие и завершает доказательство теоремы 2

Видео:Центр окружности описанной вокруг треугольникаСкачать

Центр окружности описанной вокруг треугольника

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Центр окружности в остроугольном треугольнике

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Центр окружности в остроугольном треугольнике,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Центр окружности в остроугольном треугольнике

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Центр окружности в остроугольном треугольникеВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаЦентр окружности в остроугольном треугольникеОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиЦентр окружности в остроугольном треугольникеЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиЦентр окружности в остроугольном треугольникеЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовЦентр окружности в остроугольном треугольнике
Площадь треугольникаЦентр окружности в остроугольном треугольнике
Радиус описанной окружностиЦентр окружности в остроугольном треугольнике
Серединные перпендикуляры к сторонам треугольника
Центр окружности в остроугольном треугольнике

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаЦентр окружности в остроугольном треугольнике

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиЦентр окружности в остроугольном треугольнике

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиЦентр окружности в остроугольном треугольнике

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиЦентр окружности в остроугольном треугольнике

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовЦентр окружности в остроугольном треугольнике

Для любого треугольника справедливы равенства (теорема синусов):

Центр окружности в остроугольном треугольнике,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаЦентр окружности в остроугольном треугольнике

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиЦентр окружности в остроугольном треугольнике

Для любого треугольника справедливо равенство:

Центр окружности в остроугольном треугольнике

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Точка O центр окружности описанной около остроугольного треугольникаСкачать

Точка O центр окружности описанной около остроугольного треугольника

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Центр окружности в остроугольном треугольнике

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Центр окружности в остроугольном треугольнике

Центр окружности в остроугольном треугольнике.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Центр окружности в остроугольном треугольнике

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:88 Центр описанной окружности треугольникаСкачать

88 Центр описанной окружности треугольника

Окружность, описанная около треугольника

Видео:Через центр О окружности, описанной около остроугольного треугольника ДВИ МГУСкачать

Через центр О окружности, описанной около остроугольного треугольника ДВИ МГУ

Определение окружности, описанной около треугольника

Определение 1. Окружностью, описанной около треугольника называется окружность, проходящей через все три вершины треугольника (Рис.1).

Центр окружности в остроугольном треугольнике

При этом треугольник называется треугольником вписанным в окружность .

Видео:Строим вписанную в данный треугольник окружность (Задача 2).Скачать

Строим вписанную в данный треугольник окружность (Задача 2).

Теорема об окружности, описанной около треугольника

Теорема 1. Около любого треугольника можно описать окружность.

Центр окружности в остроугольном треугольнике

Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения серединных перпендикуляров к его сторонам. Проведем отрезки OA, OB и OC. Поскольку точка O равноудалена от точек A, B и C, то OA=OB=OC. Тогда окружность с центром O и радиусом OA проходит через все три вершины треугольника ABC и, следовательно, является окружностью, описанной около треугольника ABC.Центр окружности в остроугольном треугольнике

Из теоремы 1 следует, что центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника.

Замечание 1. Около любого треугольника можно описать только одну окружность.

Доказательство. Допустим, что около треугольника можно описать две окружности. Тогда центр каждой из этих окружностей равноудален от вершин треугольника и совпадает с точкой O пересечения серединных перпендикуляров сторон треугольника. Радиус этих окружностей равен расстоянию от точки O до вершин треугольника. Поэтому эти окружности совпадают.Центр окружности в остроугольном треугольнике

Видео:Диагностическая работа-1 в формате ОГЭ. Задача-25Скачать

Диагностическая работа-1 в формате ОГЭ. Задача-25

Окружность, описанная около треугольника

Что такое окружность, описанная около треугольника? Что является центром этой окружности? Как расположение центра описанной окружности зависит от вида треугольника?

Окружность называется описанной около треугольника, если все вершины треугольника лежат на окружности.

При этом треугольник называется вписанным в окружность .

Центр окружности в остроугольном треугольнике

Расстояние от любой вершины треугольника до центра описанной окружности равно радиусу этой окружности.

Окружность можно описать около любого треугольника.

Центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника (то есть отрезков, перпендикулярных к сторонам треугольника и проходящих через середины этих сторон).

Центр окружности в остроугольном треугольнике

Центр окружности, описанной около остроугольного треугольника, лежит внутри треугольника.

Центр окружности в остроугольном треугольнике

Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.

Центр окружности в остроугольном треугольнике

Центр окружности, описанной около тупоугольного треугольника, лежит вне треугольника (напротив тупого угла, за большей стороной).

🎥 Видео

2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

2038 центр окружности описанной около треугольника ABC лежит на стороне AB

Окружность и треугольникСкачать

Окружность и треугольник

Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Центр описанной окружности.Скачать

Центр описанной окружности.

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Задание 16 ЕГЭ по математикеСкачать

Задание 16 ЕГЭ по математике

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность, описанная около треугольника. Как найти центр и радиус. Геометрия 7-8 классСкачать

Окружность, описанная около треугольника. Как найти центр и радиус. Геометрия 7-8 класс

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

ЕГЭ Задание 16 Первый признак подобия треугольниковСкачать

ЕГЭ Задание 16 Первый признак подобия треугольников

Радиус описанной окружностиСкачать

Радиус описанной окружности

2031 окружность центром в точке О описана около равнобедренного треугольника ABCСкачать

2031 окружность центром в точке О описана около равнобедренного треугольника ABC
Поделиться или сохранить к себе: