Центр окружности описанной около равностороннего треугольника

Окружность, описанная около треугольника

Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Определение окружности, описанной около треугольника

Определение 1. Окружностью, описанной около треугольника называется окружность, проходящей через все три вершины треугольника (Рис.1).

Центр окружности описанной около равностороннего треугольника

При этом треугольник называется треугольником вписанным в окружность .

Видео:Свойство окружности, описанной около равнобедренного треугольникаСкачать

Свойство окружности, описанной около равнобедренного треугольника

Теорема об окружности, описанной около треугольника

Теорема 1. Около любого треугольника можно описать окружность.

Центр окружности описанной около равностороннего треугольника

Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения серединных перпендикуляров к его сторонам. Проведем отрезки OA, OB и OC. Поскольку точка O равноудалена от точек A, B и C, то OA=OB=OC. Тогда окружность с центром O и радиусом OA проходит через все три вершины треугольника ABC и, следовательно, является окружностью, описанной около треугольника ABC.Центр окружности описанной около равностороннего треугольника

Из теоремы 1 следует, что центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника.

Замечание 1. Около любого треугольника можно описать только одну окружность.

Доказательство. Допустим, что около треугольника можно описать две окружности. Тогда центр каждой из этих окружностей равноудален от вершин треугольника и совпадает с точкой O пересечения серединных перпендикуляров сторон треугольника. Радиус этих окружностей равен расстоянию от точки O до вершин треугольника. Поэтому эти окружности совпадают.Центр окружности описанной около равностороннего треугольника

Видео:Радиус окружности описанной около равностороннего треугольникаСкачать

Радиус окружности описанной около равностороннего треугольника

Окружность, описанная около правильного треугольника

Окружность, описанная около правильного треугольника, обладает всеми свойствами описанной около произвольного треугольника окружности и, кроме того, имеет свои собственные свойства.

1) Центр описанной около треугольника окружности — точка пересечения серединных перпендикуляров к его сторонам.

Поскольку в равностороннем треугольнике медианы, высоты и биссектрисы совпадают, центр описанной около правильного треугольника окружности лежит в точке пересечения его медиан, высот и биссектрис.

Центр окружности описанной около равностороннего треугольникаНапример, в правильном треугольнике ABC AB=BC=AC=a

точка O — центр описанной окружности.

AK, BF и CD — медианы, высоты и биссектрисы треугольника ABC.

Центр окружности описанной около равностороннего треугольника

Центр окружности описанной около равностороннего треугольника

2) Расстояние от центра описанной окружности до вершин треугольника равно радиусу. Так как центр описанной около равностороннего треугольника окружности лежит на пересечении его медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то радиус описанной окружности составляет две трети от длины медианы:

Центр окружности описанной около равностороннего треугольника

Центр окружности описанной около равностороннего треугольника

Таким образом, формула радиуса описанной около правильного треугольника окружности

Центр окружности описанной около равностороннего треугольника

И обратно, сторона равностороннего треугольника через радиус описанной окружности

Центр окружности описанной около равностороннего треугольника

3) Формула для нахождения площади правильного треугольника по его стороне —

Центр окружности описанной около равностороннего треугольника

Отсюда можем найти площадь через радиус описанной окружности:

Центр окружности описанной около равностороннего треугольника

Таким образом, формула площади площади правильного треугольника через радиус описанной окружности

Центр окружности описанной около равностороннего треугольника

4) Центр описанной около правильного треугольника окружности совпадает с центром вписанной в него окружности.

5) Радиус описанной около равностороннего треугольника окружности в два раза больше радиуса вписанной окружности:

Видео:Геометрия На дуге AC окружности, описанной около равностороннего треугольника ABC, отмечена точка MСкачать

Геометрия На дуге AC окружности, описанной около равностороннего треугольника ABC, отмечена точка M

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Центр окружности описанной около равностороннего треугольникаСерединный перпендикуляр к отрезку
Центр окружности описанной около равностороннего треугольникаОкружность описанная около треугольника
Центр окружности описанной около равностороннего треугольникаСвойства описанной около треугольника окружности. Теорема синусов
Центр окружности описанной около равностороннего треугольникаДоказательства теорем о свойствах описанной около треугольника окружности

Центр окружности описанной около равностороннего треугольника

Видео:ОГЭ 2020 задание 17Скачать

ОГЭ 2020 задание 17

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Центр окружности описанной около равностороннего треугольника

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Центр окружности описанной около равностороннего треугольника

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Центр окружности описанной около равностороннего треугольника

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Центр окружности описанной около равностороннего треугольника

Центр окружности описанной около равностороннего треугольника

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Центр окружности описанной около равностороннего треугольника

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Центр окружности описанной около равностороннего треугольника

Центр окружности описанной около равностороннего треугольника

Полученное противоречие и завершает доказательство теоремы 2

Видео:Задание 16 ОГЭ по математике. Окружность описана около равностороннего треугольника. Задача 2Скачать

Задание 16 ОГЭ по математике. Окружность описана около  равностороннего   треугольника. Задача 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Центр окружности описанной около равностороннего треугольника

Видео:КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ПРАВИЛЬНОГО ТРЕУГОЛЬНИКА? Примеры | ГЕОМЕТРИЯ 9 классСкачать

КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ПРАВИЛЬНОГО ТРЕУГОЛЬНИКА? Примеры | ГЕОМЕТРИЯ 9 класс

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Центр окружности описанной около равностороннего треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Центр окружности описанной около равностороннего треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Центр окружности описанной около равностороннего треугольникаВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаЦентр окружности описанной около равностороннего треугольникаОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиЦентр окружности описанной около равностороннего треугольникаЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиЦентр окружности описанной около равностороннего треугольникаЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовЦентр окружности описанной около равностороннего треугольника
Площадь треугольникаЦентр окружности описанной около равностороннего треугольника
Радиус описанной окружностиЦентр окружности описанной около равностороннего треугольника
Серединные перпендикуляры к сторонам треугольника
Центр окружности описанной около равностороннего треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаЦентр окружности описанной около равностороннего треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиЦентр окружности описанной около равностороннего треугольника

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиЦентр окружности описанной около равностороннего треугольника

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиЦентр окружности описанной около равностороннего треугольника

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовЦентр окружности описанной около равностороннего треугольника

Для любого треугольника справедливы равенства (теорема синусов):

Центр окружности описанной около равностороннего треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаЦентр окружности описанной около равностороннего треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиЦентр окружности описанной около равностороннего треугольника

Для любого треугольника справедливо равенство:

Центр окружности описанной около равностороннего треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:2031 окружность центром в точке О описана около равнобедренного треугольника ABCСкачать

2031 окружность центром в точке О описана около равнобедренного треугольника ABC

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Центр окружности описанной около равностороннего треугольника

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Центр окружности описанной около равностороннего треугольника

Центр окружности описанной около равностороннего треугольника.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Центр окружности описанной около равностороннего треугольника

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

📸 Видео

Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту треугольникаСкачать

Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту треугольника

2047 радиус окружности описанной около правильного треугольника равна 36 корней из 3Скачать

2047 радиус окружности описанной около правильного треугольника равна 36 корней из 3

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

ОГЭ. Задача на описанную окружность № 16. Как легко решить задачуСкачать

ОГЭ. Задача на описанную окружность № 16. Как легко решить задачу

Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

Вписанная и описанная около равнобедренного треугольника,  окружность

ОГЭ 17🔴Скачать

ОГЭ 17🔴

№1104. Найдите длину окружности, описанной около: а) правильного треугольника со стороной аСкачать

№1104. Найдите длину окружности, описанной около: а) правильного треугольника со стороной а

Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать

Задача 6 №27909 ЕГЭ по математике. Урок 129

Окружность описана около равнобедренного треугольника. Найти центральный уголСкачать

Окружность описана около равнобедренного треугольника.  Найти центральный угол

Окружность с центром в точке O описана ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Окружность с центром в точке O описана ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА
Поделиться или сохранить к себе: