Центр окружности лежит на середине стороны треугольника

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Центр окружности лежит на середине стороны треугольникаСерединный перпендикуляр к отрезку
Центр окружности лежит на середине стороны треугольникаОкружность описанная около треугольника
Центр окружности лежит на середине стороны треугольникаСвойства описанной около треугольника окружности. Теорема синусов
Центр окружности лежит на середине стороны треугольникаДоказательства теорем о свойствах описанной около треугольника окружности

Центр окружности лежит на середине стороны треугольника

Видео:2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

2038 центр окружности описанной около треугольника ABC лежит на стороне AB

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Центр окружности лежит на середине стороны треугольника

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Центр окружности лежит на середине стороны треугольника

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Центр окружности лежит на середине стороны треугольника

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Центр окружности лежит на середине стороны треугольника

Центр окружности лежит на середине стороны треугольника

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Центр окружности лежит на середине стороны треугольника

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Центр окружности лежит на середине стороны треугольника

Центр окружности лежит на середине стороны треугольника

Полученное противоречие и завершает доказательство теоремы 2

Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Центр окружности лежит на середине стороны треугольника

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Центр окружности лежит на середине стороны треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Центр окружности лежит на середине стороны треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Центр окружности лежит на середине стороны треугольникаВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаЦентр окружности лежит на середине стороны треугольникаОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиЦентр окружности лежит на середине стороны треугольникаЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиЦентр окружности лежит на середине стороны треугольникаЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовЦентр окружности лежит на середине стороны треугольника
Площадь треугольникаЦентр окружности лежит на середине стороны треугольника
Радиус описанной окружностиЦентр окружности лежит на середине стороны треугольника
Серединные перпендикуляры к сторонам треугольника
Центр окружности лежит на середине стороны треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаЦентр окружности лежит на середине стороны треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиЦентр окружности лежит на середине стороны треугольника

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиЦентр окружности лежит на середине стороны треугольника

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиЦентр окружности лежит на середине стороны треугольника

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовЦентр окружности лежит на середине стороны треугольника

Для любого треугольника справедливы равенства (теорема синусов):

Центр окружности лежит на середине стороны треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаЦентр окружности лежит на середине стороны треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиЦентр окружности лежит на середине стороны треугольника

Для любого треугольника справедливо равенство:

Центр окружности лежит на середине стороны треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Центр окружности лежит на середине стороны треугольника

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Центр окружности лежит на середине стороны треугольника

Центр окружности лежит на середине стороны треугольника.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Центр окружности лежит на середине стороны треугольника

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:№583. Стороны треугольника касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскоСкачать

№583. Стороны треугольника касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоско

Окружность, описанная около треугольника

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Определение окружности, описанной около треугольника

Определение 1. Окружностью, описанной около треугольника называется окружность, проходящей через все три вершины треугольника (Рис.1).

Центр окружности лежит на середине стороны треугольника

При этом треугольник называется треугольником вписанным в окружность .

Видео:Центр окружности описанной вокруг треугольникаСкачать

Центр окружности описанной вокруг треугольника

Теорема об окружности, описанной около треугольника

Теорема 1. Около любого треугольника можно описать окружность.

Центр окружности лежит на середине стороны треугольника

Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения серединных перпендикуляров к его сторонам. Проведем отрезки OA, OB и OC. Поскольку точка O равноудалена от точек A, B и C, то OA=OB=OC. Тогда окружность с центром O и радиусом OA проходит через все три вершины треугольника ABC и, следовательно, является окружностью, описанной около треугольника ABC.Центр окружности лежит на середине стороны треугольника

Из теоремы 1 следует, что центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника.

Замечание 1. Около любого треугольника можно описать только одну окружность.

Доказательство. Допустим, что около треугольника можно описать две окружности. Тогда центр каждой из этих окружностей равноудален от вершин треугольника и совпадает с точкой O пересечения серединных перпендикуляров сторон треугольника. Радиус этих окружностей равен расстоянию от точки O до вершин треугольника. Поэтому эти окружности совпадают.Центр окружности лежит на середине стороны треугольника

Видео:Центр описанной окружности.Скачать

Центр описанной окружности.

Если центр описанной окружности лежит на стороне треугольника

Если центр описанной около треугольника окружности лежит на стороне треугольника, то этот треугольник — прямоугольный.

Сторона, на которой лежит центр описанной окружности, является гипотенузой.

Центр окружности лежит на середине стороны треугольникаДано : ∆ABC, окружность (O: R) — описанная, O∈AB

Доказать : ∆ABC — прямоугольный,

AB — хорда проходящая через центр окружности. Значит, AB — диаметр.

Значит, треугольник ABC — прямоугольный, AB — гипотенуза.

Что и требовалось доказать .

Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 20. Найти AC, если BC=32.

Центр окружности лежит на середине стороны треугольникаДано : ∆ABC, окружность (O: R) — описанная, O∈AB, R=20, BC=32

Так как центр описанной около треугольника окружности ABC окружности лежит на стороне AB, то ABC — прямоугольный треугольник с гипотенузой AB.

🎦 Видео

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая Эйлера

Радиус описанной окружностиСкачать

Радиус описанной окружности

ОГЭ по математике. Треугольник вписан в окружность . (Вар. 4) √ 17 модуль геометрия ОГЭСкачать

ОГЭ по математике. Треугольник вписан в окружность . (Вар. 4) √ 17 модуль геометрия ОГЭ

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

8 класс, 39 урок, Описанная окружностьСкачать

8 класс, 39 урок, Описанная окружность

Вписанная окружностьСкачать

Вписанная окружность

36 Где лежит центр окружности, описанной около произвольного треугольникаСкачать

36 Где лежит центр окружности, описанной около произвольного треугольника

Где искать центр описанной окружности #геометрия #огэ #егэ #математикаСкачать

Где искать центр описанной окружности #геометрия #огэ #егэ #математика

9 - 10 класс. Свойства ортоцентраСкачать

9 - 10 класс.  Свойства ортоцентра

Центр окружности описанной вокруг треугольникаСкачать

Центр окружности описанной вокруг треугольника

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Окружность и треугольникСкачать

Окружность и треугольник
Поделиться или сохранить к себе: