Центр окружности это точка пересечения

Центр окружности это точка пересечения

Окружность – это фигура, которая состоит из всех точек плоскости, равноудаленных от данной точки.

Основные понятия:

Центр окружности – это точка, равноудаленная от точек окружности.

Радиус – это расстояние от точек окружности до ее центра (равен половине диаметра, рис.1).

Диаметр – это хорда, проходящая через центр окружности (рис.1).

Хорда – это отрезок, соединяющий две точки окружности (рис.1).

Касательная – это прямая, имеющая только одну общую точку с окружностью. Проходит через точку окружности перпендикулярно диаметру, проведенному в эту точку (рис.1).

Секущая – это прямая, проходящая через две различные точки окружности (рис.1).

Единичная окружность – это окружность, радиус которой равен единице.

Дуга окружности – это часть окружности, разделенная двумя несовпадающими точками окружности.

1 радиан – это угол, образуемый дугой окружности, равной длине радиуса (рис.4).
1 радиан = 180˚ : π ≈ 57,3˚

Центральный угол – это угол с вершиной в центре окружности. Равен градусной мере дуги, на которую опирается (рис.2).

Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают эту окружность. Равен половине градусной меры дуги, на которую опирается (рис.3).

Центр окружности это точка пересеченияДве окружности, имеющие общий центр, называются концентрическими.

Две окружности, пересекающиеся под прямым углом, называются ортогональными.

Длина окружности и площадь круга:

Обозначения:
Длина окружности – C
Длина диаметра – d
Длина радиуса – r

Значение π:
Отношение длины окружности к длине ее диаметра обозначается греческой буквой π (пи).

Формула длины окружности:

C = πd, или C = 2πr

Формулы площади круга:

Площадь кругового сектора и кругового сегмента.

Круговой сектор – это часть круга, лежащая внутри соответствующего центрального угла.
Формула площади кругового сектора:

πR 2
S = ——— α
360

где π – постоянная величина, равная 3,1416; R – радиус круга; α – градусная мера соответствующего центрального угла.

Круговой сегмент – это общая часть круга и полуплоскости.
Формула площади кругового сегмента:

πR 2
S = ——— α ± SΔ
360

где α – градусная мера центрального угла, который содержит дугу этого кругового сегмента; SΔ — площадь треугольника с вершинами в центре круга и в концах радиусов, ограничивающих соответствующий сектор.

Знак «минус» надо брать, когда α 180˚.

Уравнение окружности в декартовых координатах x, y c центром в точке (a;b):

Окружность, описанная около треугольника (рис.4).

Если от середины каждой из сторон треугольника провести перпендикуляры, то точка их пересечения будет центром окружности, описанной около этого треугольника.

Окружность, вписанная в треугольник (рис.5).

Центр окружности, вписанной в треугольник, является точкой пересечения биссектрис этого треугольника.

Углы, вписанные в окружность (рис.3).

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным в окружность.

Угол, вписанный в окружность, равен половине соответствующего центрального угла.

Основные понятия:

Угол делит плоскость на две части. Каждая из этих частей называется плоским углом.

Плоские углы с общими сторонами называются дополнительными.

Плоский угол с вершиной в центре окружности называется центральным углом (рис.2)

Центр окружности это точка пересечения
Пропорциональность отрезков хорд и секущих окружности.

Если хорды AB и CD окружности пересекаются в точке S, то

Если из точки P к окружности проведены две секущие, пересекающие окружность соответственно в точках A, B и C, D, то

Частные случаи и формулы:

1) Из точки C, находящейся вне окружности, проведем касательную к окружности и обозначим точку их соприкосновения буквой D.

Затем из той же точки C проведем секущую и точки пересечения секущей и окружности обозначим буквами А и B (рис.8).

CD 2 = AC · BC

Центр окружности это точка пересечения

2) Проведем в окружности диаметр AB. Затем из точки C, находящейся на окружности, проведем перпендикуляр к этому диаметру и обозначим получившийся отрезок CD (рис.9).

CD 2 = AD · BD.

Видео:Как найти центр круга #2Скачать

Как найти центр круга #2

Центр описанной окружности

Где находится центр описанной около треугольника окружности? Что можно сказать о центре окружности, описанной около многоугольника?

Центр описанной около треугольника окружности является точкой пересечения серединных перпендикуляров к сторонам треугольника.

Центр окружности это точка пересечения

окружность (O;R) — описанная около ∆ ABC.

O — точка пересечения серединных перпендикуляров к сторонам ∆ ABC.

Центр окружности это точка пересеченияСоединим отрезками точки O и A, O и C.

OA=OC (как радиусы), следовательно, треугольник AOC — равнобедренный с основанием AC (по определению).

Центр окружности это точка пересеченияПо свойству равнобедренного треугольника, высота и медиана, проведенные к основанию AC, совпадают):

Центр окружности это точка пересечения

Следовательно, центр описанной окружности — точка O — лежит на прямой, перпендикулярной стороне AC и проходящей через ее середину, то есть на серединном перпендикуляре к AC.

Центр окружности это точка пересеченияАналогично доказывается, что точка O лежит на серединном перпендикуляре к стороне AB.

Так как серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, то точка O — центр описанной около треугольника ABC окружности.

Что и требовалось доказать.

Аналогичные рассуждения можно применить и для многоугольника, около которого можно описать окружность.

Центр описанной около многоугольника окружности является точкой пересечения серединных перпендикуляров к сторонам этого многоугольника.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

2 Comments

на мой взгляд у вас опечатка — «Соединим отрезками точки O и A, O и C.

OA=OB( написано ОВ вместо ОС) (как радиусы), следовательно, треугольник AOB — равнобедренный с основанием AC (по определению).»

Видео:Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)Скачать

Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)

Планиметрия. Страница 3

Центр окружности это точка пересечения

  • Главная
  • Репетиторы
  • Статьи и материалы
  • Контакты

Центр окружности это точка пересечения

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

1.Окружность

Окружностью называется фигура, состоящая из множества точек на плоскости, равноудаленных от данной точки.

Эта данная точка называется центром окружности. Расстояние от центра окружности до ее точек называется радиусом окружности.

Отрезок, соединяющий две точки окружности, называется хордой.

Если хорда проходит через центр окружности, то она называется диаметром. (Рис.1)

ОА — радиус
ВС — диаметр
DE — хорда

Центр окружности это точка пересечения

Рис.1 Окружность, радиус, диаметр, хорда.

Видео:Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

2.Окружность, описанная около треугольника

Теорема: центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров, опущенных на середины сторон данного треугольника.

Доказательство. Пусть АВС данный треугольник и точка О является центром окружности, описанной около данного треугольника. (Рис.2) Тогда отрезки ОА, ОВ, ОС равны как радиусы. Следовательно, треугольники Δ АОВ, Δ ВОС, Δ АОС — равнобедренные. А следовательно, и медианы, проведенные к серединам сторон ОК, ОЕ, ОD, являются одновременно биссектрисой и высотой. Поэтому предположение, что центр окружности, описанной около треугольника, является точкой пересечения высот, верно.

Центр окружности это точка пересечения

Рис.2 Теорема. Окружность, описанная около треугольника.

Видео:Быстро и легко определяем центр любой окружностиСкачать

Быстро и легко определяем центр любой окружности

3.Окружность, вписанная в треугольник

Теорема. центр окружности, вписанной в треугольник, является точкой пересечения биссектрис, проведенных из его углов.

Доказательство. Пусть дан треугольник АВС. Точка О — центр вписанной окружности. (Рис. 3)

Тогда треугольник Δ АОЕ равен треугольнику Δ АОТ,
Δ СОЕ = Δ СОК,
Δ ВОК = Δ ВОТ.
Так как стороны ОА, ОВ, ОС у них общие. А ОК, ОЕ, ОТ как радиусы.
Следовательно:
∠ ЕАО = ∠ ТАО,
∠ ЕСО = ∠ КСО,
∠ КВО = ∠ ТВО.

Это значит, что точка О лежит на пересечении биссектрис АО, ВО, СО.

Пример 1

Дана окружность с центром О. И проведена касательная а из точки С к этой окружности. Доказать, что точка К лежит на основании равнобедренного треугольника ОВС, если OB = 2R. (рис.5)

По условию прямая а есть касательная к окружности, следовательно радиус, проведенный к точке касания ОК, и который лежит на прямой с, составляет прямой угол с касательной. Так как ОВ = 2R и KB = R, то прямая а будет представлять собой геометрическое место точек, так как она перпендикулярна отрезку ОВ и проходит через его середину. А следовательно, треугольники ВКС и ОКС равны по первому признаку равенства треугольников. Отсюда можно сделать вывод, что точка К будет лежать на основании равнобедренного треугольника ВОС.

Главная > Учебные материалы > Математика: Планиметрия. Страница 3
Центр окружности это точка пересечения
Центр окружности это точка пересечения
1 2 3 4 5 6 7 8 9 10 11 12
Центр окружности это точка пересечения
Центр окружности это точка пересечения

Рис.3 Теорема. Окружность, вписанная в треугольник.

Видео:Уравнение окружности (1)Скачать

Уравнение окружности (1)

4.Геометрическое место точек

Геометрическое место точек это фигура, которая представляет собой совокупность точек на плоскости, подчиняющихся определенному закону или обладающих определенным свойством.

Теорема. Геометрическим местом точек называется прямая, все точки которой равноудалены от двух данных точек, перпендикулярная отрезку, соединяющему эти точки и проходящая через его середину.

Доказательство. Пусть дан отрезок АС. Прямая А проходит через середину этого отрезка и перпендикулярна ему.(Рис. 4).

Тогда треугольники Δ АМВ и Δ СМВ равны. Так как сторона ВМ у них обшая, а стороны АМ и МС равны по условию. Следовательно точка В равноудалена от точек А и С.
Возьмем другую точку, например D, не лежащую на прямой а. Тогда сторона MD не принадлежит прямой а. А следовательно, углы AMD и DMC не равны т.к. не равны треугольники. Данное утверждение основано на том, что через точку, лежащую на прямой, можно провести только одну перпендикулярную ей прямую. И следовательно, расстояния от точки D до точек А и С не равны. Поэтому, для того чтобы расстояния от некой точки Х до двух данных точек были равны, необходимо чтобы она лежала на прямой а, которая перпендикулярна отрезку, соединяющего эти точки, и которая проходит через его середину.

Центр окружности это точка пересечения

Рис.4 Теорема. Геометрическое место точек.

Центр окружности это точка пересечения
Центр окружности это точка пересечения
Центр окружности это точка пересечения

Рис.5 Задача. Дана окружность с центром О.

Пример 2

Докажите, что касательная к окружности не имеет с ней других общих точек, кроме точки касания. (Рис.6)

Доказательство:

Пусть дана окружность с центром в точке О. И прямая а, которая касается окружности в точке А. Допустим, что прямая а имеет еще одну точку касаная — точку В. Тогда радиус окружности, проведенный к точкам А и В образует угол с прямой а равный 90°.

Таким образом, в равнобедренном треугольнике АОВ углы при вершинах А и В равны 90°. А это невозможно. Следовательно, мы пришли к противоречию и прямая а не может касаться окружности в двух точках.

Центр окружности это точка пересечения

Рис.6 Задача. Касательная к окружности.

Пример 3

Точки А,В,С лежат на одной прямой, а точка О лежит вне этой прямой. Докажите, что треугольники АОВ и ВОС не могут быть равнобедренными с основаниями АВ и ВС. (Рис.7)

Доказательство:

Допустим, что треугольники АОВ и ВОС равнобедренные с основаниями АВ и ВС. Тогда Стороны АО, ВО и СО равны. Отсюда следует, что углы ОАВ, АВО, ОВС и ОСВ равны. И ∠АВО = ∠ОВС = 90°, так как эти углы являются смежными, а их сумма равна 180°.

Таким образом, в равнобедренных треугольниках АОВ и ВОС углы при вершинах А и С равны 90°. А это невозможно, потому, что тогда стороны АО, ВО и СО были бы параллельны, так как они перпендикулярны одной прямой АС. Следовательно, мы пришли к противоречию, и треугольники АОВ и ВОС не могут быть равнобедренными с основаниями АВ и ВС.

Центр окружности это точка пересечения

Рис.7 Задача. Даны три точки на прямой.

Пример 4

Окружности с центрами О и О1 пересекаются в точках А и В. Докажите, что прямая АВ перпендикулярна прямой ОО1 (Рис.8)

Доказательство:

Так как окружности пересекаются в точках А и В, то эти две точки принадлежат обеим окружностям. Следовательно, отрезок ОА = ОВ, как радиусы окружности с центром в точке О. А отрезок О1А = О1В, как радиусы окружности с центром в точке О1.

Таким образом, треугольники ОАО1 и ОВО1 равны по третьему признаку равенства треугольников (по трем сторонам). А следовательно отрезки АС и ВС равны. И прямая ОО1 является геометрическим местом точек для двух данных точек А и В. Т.е. любая точка прямой ОО1 равноудалена от двух данных точек А и В. Следовательно, треугольники ОАС и ОВС равны, также как и треугольники АСО1 и ВСО1 по трем сторонам. А отсюда следует равенство углов при вершине С. Т.е. ∠ОСА = ∠ОСВ = ∠АСО1 = ∠ВСО1 = 90°.

Следовательно, можно сделать вывод, что прямая АВ перпендикулярна прямой ОО1.

Центр окружности это точка пересечения

Рис.8 Задача. Окружности с центрами О и О1.

Пример 5

Отрезок ВС пересекает прямую а в точке О. Расстояние от точек В и С до прямой а равны. Докажите, что точка О является серединой отрезка ВС (Рис.9)

Доказательство:

По условию задачи, расстояния от точек В и С до прямой а равны. Т.е. РС = BQ. Так как расстояние от точки до прямой представляет собой перпендикуляр, то два треугольника РОС и ВОQ, образованные двумя пересекающимися прямыми ВС и а, и перпендикулярами, опущенными на одну из них, равны по второму признаку равенства треугольников ( по стороне и двум прилегающим к ней углам: РС = BQ, углы при вершинах В и С равны как внутренние накрест лежащие, а углы при вершинах Р и Q прямые).

Из равенства треугольников РОС и ВОQ следует, что ВО = ОС.

Центр окружности это точка пересечения

Рис.9 Задача. Отрезок ВС пересекает прямую а .

🎦 Видео

Точка O центр окружности описанной около остроугольного треугольникаСкачать

Точка O центр окружности описанной около остроугольного треугольника

Планиметрия 19 | mathus.ru| расстояние от центра окружности до точки пересечения диагоналей трапецииСкачать

Планиметрия 19 | mathus.ru| расстояние от центра окружности до точки пересечения диагоналей трапеции

Взаимное расположение и точки пересечения прямой и окружностиСкачать

Взаимное расположение и точки пересечения прямой и окружности

2020 точка О центр окружности на которой лежат точки A B и C известно что Угол ABC равен 62 градусаСкачать

2020 точка О центр окружности на которой лежат точки A B и C известно что Угол ABC равен 62 градуса

Центр окружности описанной вокруг треугольникаСкачать

Центр окружности описанной вокруг треугольника

Точка пересечения биссектрис, медиан, высот, серединных перпендикуляровСкачать

Точка пересечения биссектрис, медиан, высот, серединных перпендикуляров

Найдите центр тяжестиСкачать

Найдите центр тяжести

Найти центр кругаСкачать

Найти центр круга

4K Как найти центр окружности, how to find the center of a circleСкачать

4K Как найти центр окружности, how to find the center of a circle

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямой

Задание 16 ЕГЭ по математикеСкачать

Задание 16 ЕГЭ по математике
Поделиться или сохранить к себе: