Треугольник всегда 180 градусов

Сумма углов треугольника

Треугольник всегда 180 градусов

Сумма углов треугольника — это сумма
всех внутренних углов треугольника.

Так, как углы измеряются в градусах, соответственно значение
суммы углов треугольника также измеряется в градусах.

Сумма углов треугольника есть величина постоянная,
неизменяемая, она равна 180 градусам, вне зависимости
от вида рассматриваемого треугольника.

Треугольник всегда 180 градусов

На рисунке 1 изображены равносторонний,
разносторонний и прямоугольный треугольники,
их суммы внутренних углов равны 180 градусам.

Также, существует теорема, которая доказывает
утверждение о том, что сумма углов треугольника
180 градусов, она называется теоремой
о сумме углов треугольника.

Теорема о сумме углов треугольника — это теорема в
геометрии о сумме углов произвольного треугольника на плоскости.

Видео:Почему сумма углов в треугольнике 180 градусов? #умскул #егэпрофиль #математикаегэ #математикаСкачать

Почему сумма углов в треугольнике 180 градусов? #умскул #егэпрофиль #математикаегэ #математика

Сумма углов треугольника

Сумма треугольника равна 180 градусов.

Это легко доказать. Нарисуйте треугольник. Через одну из его вершин проведите прямую, параллельную противоположной стороне, и найдите на рисунке равные углы. Сравните с решением в конце статьи.

Треугольник всегда 180 градусов

А мы разберем задачи ЕГЭ, в которых фигурирует сумма углов треугольника.

1. Один из внешних углов треугольника равен 85 градусов. Углы, не смежные с данным внешним углом, относятся как 2:3. Найдите наибольший из них. Ответ дайте в градусах.

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Следовательно, сумма двух других углов треугольника равна 85 градусов, а их отношение равно 2:3. Пусть эти углы равны 2х и 3х. Получим уравнение

2. Один из углов равнобедренного треугольника равен 98 градусов. Найдите один из других его углов. Ответ дайте в градусах.

Как вы думаете, может ли равнобедренный треугольник иметь два угла по 98 градусов?

Нет, конечно! Ведь сумма углов треугольника равна 180 градусов. Значит, один из углов треугольника равен , а два других равны .

3. На рисунке угол равен , угол равен , угол равен . Найдите угол . Ответ дайте в градусах.

Треугольник всегда 180 градусов

Давайте отметим на чертеже еще несколько углов. Они нам понадобятся.

Треугольник всегда 180 градусов

Сначала найдем угол .

Угол , смежный с углом равен .

Заметим, что такой способ решения — не единственный. Просто находите и отмечайте на чертеже все углы, которые можно найти.

Ты нашел то, что искал? Поделись с друзьями!

4. Углы треугольника относятся как . Найдите меньший из них. Ответ дайте в градусах.

Пусть углы треугольника равны , и . Запишем, чему равна сумма углов этого треугольника.

Как же все-таки доказать, что сумма углов треугольника равна 180 градусов? Очень просто. На нашем рисунке угол равен углу (они накрест лежащие). Угол равен углу (тоже накрест лежащие). Развернутый угол равен . Значит, и сумма углов треугольника тоже равна 180 градусов.

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Сумма углов треугольника. Теорема о сумме углов треугольника

Треугольник представляет собой многоугольник, имеющий три стороны (три угла). Чаще всего стороны обозначают маленькими буквами, соответствующими заглавным буквам, которыми обозначают противоположные вершины. В данной статье мы ознакомимся с видами этих геометрических фигур, теоремой, которая определяет, чему равняется сумма углов треугольника.

Треугольник всегда 180 градусов

Видео:Почему сумма углов треугольника 180 градусов?Скачать

Почему сумма углов треугольника 180 градусов?

Виды по величине углов

Различают следующие виды многоугольника с тремя вершинами:

  • остроугольный, у которого все углы острые;
  • прямоугольный, имеющий один прямой угол, при этом стороны, его образующие, называют катетами, а сторона, которая размещена противоположно прямому углу, именуется гипотенузой;
  • тупоугольный, когда один угол тупой;
  • равнобедренный, у которого две стороны равные, и называются они боковыми, а третья – основанием треугольника;
  • равносторонний, имеющий все три равные стороны.

Треугольник всегда 180 градусов

Видео:7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать

7 класс, 31 урок, Теорема о сумме углов треугольника

Свойства

Выделяют основные свойства, которые характерны для каждого вида треугольника:

  • напротив большей стороны всегда располагается больший угол, и наоборот;
  • напротив равных по величине сторон находятся равные углы, и наоборот;
  • у любого треугольника есть два острых угла;
  • внешний угол больше по сравнению с любым внутренним углом, не смежным с ним;
  • сумма каких-либо двух углов всегда меньше 180 градусов;
  • внешний угол равняется сумме остальных двух углов, которые не межуют с ним.

Видео:ПОЧЕМУ СУММА УГЛОВ В ТРЕУГОЛЬНИКЕ РАВНА 180? #shorts #геометрия #егэ #огэ #треугольникСкачать

ПОЧЕМУ СУММА УГЛОВ В ТРЕУГОЛЬНИКЕ РАВНА 180? #shorts #геометрия #егэ #огэ #треугольник

Теорема о сумме углов треугольника

Теорема утверждает, что если сложить все углы данной геометрической фигуры, которая расположена на евклидовой плоскости, то их сумма будет составлять 180 градусов. Попробуем доказать данную теорему.

Пускай у нас есть произвольный треугольник с вершинами КМН.

Треугольник всегда 180 градусов

Видео:Сумма углов треугольника не всегда равна 180º #vertdider #veritasiumСкачать

Сумма углов треугольника не всегда равна 180º #vertdider #veritasium

Следствие

Из выше доказанной теоремы вытекает следующее следствие: любой треугольник имеет два острых угла. Чтобы это доказать, допустим, что данная геометрическая фигура имеет всего один острый угол. Также можно предположить, что ни один из углов не является острым. В этом случае должно быть как минимум два угла, величина которых равна или больше 90 градусов. Но тогда сумма углов будет больше, чем 180 градусов. А такого быть не может, поскольку согласно теореме сумма углов треугольника равна 180° — не больше и не меньше. Вот это и нужно было доказать.

Видео:Сумма углов 180 градусовСкачать

Сумма углов 180 градусов

Свойство внешних углов

Чему равна сумма углов треугольника, которые являются внешними? Ответ на этот вопрос можно получить, применив один из двух способов. Первый заключается в том, что необходимо найти сумму углов, которые взяты по одному при каждой вершине, то есть трех углов. Второй подразумевает, что нужно найти сумму всех шести углов при вершинах. Для начала разберемся с первым вариантом. Итак, треугольник содержит шесть внешних углов – при каждой вершине по два.

Треугольник всегда 180 градусов

Кроме этого, известно, что внешний угол у треугольника равняется сумме двух внутренних, которые не межуются с ним. Следовательно,

∟1 = ∟А + ∟С, ∟2 = ∟А + ∟В, ∟3 = ∟В + ∟С.

Из этого получается, что сумма внешних углов, которые взяты по одному возле каждой вершины, будет равна:

∟1 + ∟2 + ∟3 = ∟А + ∟С + ∟А + ∟В + ∟В + ∟С = 2 х (∟А + ∟В + ∟С).

С учетом того, что сумма углов равняется 180 градусам, можно утверждать, что ∟А + ∟В + ∟С = 180°. А это значит, что ∟1 + ∟2 + ∟3 = 2 х 180° = 360°. Если же применяется второй вариант, то сумма шести углов будет, соответственно, большей в два раза. То есть сумма внешних углов треугольника будет составлять:

∟1 + ∟2 + ∟3 + ∟4 + ∟5 + ∟6 = 2 х (∟1 + ∟2 + ∟2) = 720°.

Видео:Почему сумма углов треугольника 180 градусов? 📚 #егэ #профильнаяматематика #профиль #егэпрофильСкачать

Почему сумма углов треугольника 180 градусов? 📚 #егэ #профильнаяматематика #профиль #егэпрофиль

Прямоугольный треугольник

Чему равняется сумма углов прямоугольного треугольника, являющихся острыми? Ответ на этот вопрос, опять же, вытекает из теоремы, которая утверждает, что углы в треугольнике в сумме составляют 180 градусов. А звучит наше утверждение (свойство) так: в прямоугольном треугольнике острые углы в сумме дают 90 градусов. Докажем его правдивость.

Треугольник всегда 180 градусов

Итак, согласно теореме о сумме углов ∟К + ∟М + ∟Н = 180°. В нашем условии сказано, что ∟Н = 90°. Вот и получается, ∟К + ∟М + 90° = 180°. То есть ∟К + ∟М = 180° — 90° = 90°. Именно это нам и следовало доказать.

В дополнение к вышеописанным свойствам прямоугольного треугольника, можно добавить и такие:

  • углы, которые лежат против катетов, являются острыми;
  • гипотенуза треугольна больше любого из катетов;
  • сумма катетов больше гипотенузы;
  • катет треугольника, который лежит напротив угла 30 градусов, в два раза меньше гипотенузы, то есть равняется ее половине.

Как еще одно свойство данной геометрической фигуры можно выделить теорему Пифагора. Она утверждает, что в треугольнике с углом 90 градусов (прямоугольном) сумма квадратов катетов равняется квадрату гипотенузы.

Видео:Геометрия 7 класс (Урок№23 - Сумма углов треугольника.)Скачать

Геометрия 7 класс (Урок№23 - Сумма углов треугольника.)

Сумма углов равнобедренного треугольника

Ранее мы говорили, что равнобедренным называют многоугольник с тремя вершинами, содержащий две равные стороны. Известно такое свойство данной геометрической фигуры: углы при его основании равны. Докажем это.

Возьмем треугольник КМН, который является равнобедренным, КН – его основание.

Треугольник всегда 180 градусов

Но нас интересует, какова сумма углов треугольника (равнобедренного). Поскольку в этом отношении у него нет своих особенностей, будем отталкиваться от теоремы, рассмотренной ранее. То есть мы можем утверждать, что ∟К + ∟М + ∟Н = 180°, или 2 х ∟К + ∟М = 180° (поскольку ∟К = ∟Н). Данное свойство доказывать не будем, поскольку сама теорема о сумме углов треугольника была доказана ранее.

Кроме рассмотренных свойств об углах треугольника, имеют место и такие немаловажные утверждения:

  • в равнобедренном треугольнике высота, которая была опущена на основание, является одновременно медианой, биссектрисой угла, который находится между равными сторонами, а также осью симметрии его основания;
  • медианы (биссектрисы, высоты), которые проведены к боковым сторонам такой геометрической фигуры, равны.

Видео:Сумма углов треугольникаСкачать

Сумма углов треугольника

Равносторонний треугольник

Его еще называют правильным, это тот треугольник, у которого равны все стороны. А поэтому равны также и углы. Каждый из них составляет 60 градусов. Докажем это свойство.

Допустим, что у нас есть треугольник КМН. Нам известно, что КМ = НМ = КН. А это значит, что согласно свойству углов, расположенных при основании в равнобедренном треугольнике, ∟К = ∟М = ∟Н. Поскольку согласно теореме сумма углов треугольника ∟К + ∟М + ∟Н = 180°, то 3 х ∟К = 180° или ∟К = 60°, ∟М = 60°, ∟Н = 60°. Таким образом, утверждение доказано.

Треугольник всегда 180 градусов

Существуют еще такие свойства, характерные для равностороннего треугольника:

  • медиана, биссектриса, высота в такой геометрической фигуре совпадают, а их длина вычисляется как (а х √3) : 2;
  • если описать вокруг данного многоугольника окружность, то ее радиус будет равен (а х √3) : 3;
  • если вписать в равносторонний треугольник окружность, то ее радиус будет составлять (а х √3) : 6;
  • площадь этой геометрической фигуры вычисляется по формуле: (а2 х √3) : 4.

Видео:Едим Еду на Каждую Букву АЛФАВИТА !Скачать

Едим Еду на Каждую Букву АЛФАВИТА !

Тупоугольный треугольник

Согласно определению тупоугольного треугольника, один из его углов находится в промежутке от 90 до 180 градусов. Но учитывая то, что два остальных угла данной геометрической фигуры острые, можно сделать вывод, что они не превышают 90 градусов. Следовательно, теорема о сумме углов треугольника работает при расчете суммы углов в тупоугольном треугольнике. Получается, мы смело можем утверждать, опираясь на вышеупомянутую теорему, что сумма углов тупоугольного треугольника равна 180 градусам. Опять-таки, данная теорема не нуждается в повторном доказательстве.

💡 Видео

Сумма углов треугольника равна 180Скачать

Сумма углов треугольника равна 180

Прямоугольный треугольник Полное досьеСкачать

Прямоугольный треугольник Полное досье

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

СУММА УГЛОВ ТРЕУГОЛЬНИКА 180 градусовСкачать

СУММА УГЛОВ ТРЕУГОЛЬНИКА   180 градусов

Сумма углов треугольникаСкачать

Сумма углов треугольника

А ты знал? Почему сумма углов треугольника 180 градусов. #математика #геометрия #углы #7классСкачать

А ты знал? Почему сумма углов треугольника 180 градусов. #математика #геометрия #углы #7класс

Почему сумма углов в треугольнике равна 180 градусовСкачать

Почему сумма углов в треугольнике равна 180 градусов

Сумма углов треугольникаСкачать

Сумма углов треугольника

Почему сумма углов треугольника равняется 180 градусов?Скачать

Почему сумма углов треугольника равняется 180 градусов?
Поделиться или сохранить к себе: