- Ваш ответ
- решение вопроса
- Похожие вопросы
- Подготовка к контрольной работе
- Просмотр содержимого документа «Подготовка к контрольной работе»
- Треугольник вписанный в окружность
- Определение
- Формулы
- Радиус вписанной окружности в треугольник
- Радиус описанной окружности около треугольника
- Площадь треугольника
- Периметр треугольника
- Сторона треугольника
- Средняя линия треугольника
- Высота треугольника
- Свойства
- Доказательство
- 🎥 Видео
Видео:15 задание треугольники огэ по математике / маттаймСкачать

Ваш ответ
Видео:Задание 16 (В1) ОГЭ по математике ▶ №11 (Минутка ОГЭ)Скачать

решение вопроса
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Похожие вопросы
- Все категории
- экономические 43,282
- гуманитарные 33,619
- юридические 17,900
- школьный раздел 607,061
- разное 16,829
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #ShortsСкачать

Подготовка к контрольной работе
 
Урок №8. СКАЧИВАЙТЕ файл на устройства, чтобы все знаки и формулы были видны и распознаны. Во время чтения файла онлайн происходит потеря формул.
Просмотр содержимого документа 
«Подготовка к контрольной работе»
Тема: Подготовка к контрольной работе
Задачи: обобщить и систематизировать теоретически знания и умения решать задачи по теме.
Если около четырехугольника можно описать окружность, то его площадь равна
 
 
Если в четырехугольник можно вписать окружность, то его площадь равна
 
Задача 1. Равносторонний треугольник KME вписан в окружность радиуса 5. Найти сторону треугольника.
 
Решение (краткое). Воспользуемся формулой для радиуса описанной окружности около равностороннего треугольника:
 
Преобразуем её в формулу для нахождения стороны:
 
Тогда сторона треугольника:
 
Ответ: 
Задача 2. Равнобедренный треугольник QMT вписан в окружность. Высота треугольника MN=8, боковая сторона QM=MT=12. Найти радиус окружности.
 
Решение (краткое). Найдем QN из треугольника QMN:
 
Тогда сторона QT= 
Применим формулу для нахождения радиуса описанной окружности:
 
Задача 3. Треугольник MKT вписан в окружность, угол MKT опирается на диаметр. Стороны треугольника KM=12, KT=16. Найти радиус окружности.
 
Решение (краткое). Найдем длину стороны MT:
 
Т.к. MT – это диаметр окружности, то радиус вдвое меньше.
 
Задача 4. Равнобедренный треугольник REF вписан в окружность. Центр окружности делит высоту треугольника RS на отрезки RO=13 и OT=5. Найти площадь треугольника REF.
 
Решение (краткое). RO=OE=OF=13. Найдем ET:
 
Тогда сторона EF=2ET=24.
Найдем площадь треугольника:
 
Задача 5. В четырехугольник ABCD вписана окружность радиуса 10. Сумма противоположных сторон четырехугольника равна 24. Найти площадь четырехугольника.
 
Решение (краткое). Найдем площадь четырехугольника по формуле 
По свойству AB+DC=AD+BC=24, тогда полупериметр равен:
 
Тогда 
Задача 6. Прямоугольник ABCD вписан в окружность. Меньшая из его сторон равна 10, а тупой угол между диагоналями равен 120°. Найти радиус окружности.
 
Решение (краткое). Угол AOD=60°, AO=DO, следовательно, треугольник AOD равносторонний. AO=10.
ПОДВЕДЕНИЕ ИТОГОВ УРОКА. РЕФЛЕКСИЯ
Домашнее задание: подготовиться к контрольной работе, вспомнить теорию и решения задач.
Видео:Задание 16 ОГЭ по математике. Окружность вписана в равносторонний треугольник.Скачать

Треугольник вписанный в окружность
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около 
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
 
Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник, 
 если известна площадь и все стороны:
 Радиус вписанной окружности в треугольник, 
если известны площадь и периметр:
 Радиус вписанной окружности в треугольник, 
если известны полупериметр и все стороны: 
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника, 
 если известна одна из сторон и синус противолежащего стороне угла:
 Радиус описанной окружности около треугольника, 
если известны все стороны и площадь: 
 Радиус описанной окружности около треугольника, 
если известны все стороны и полупериметр:
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность, 
 если известен полупериметр и радиус вписанной окружности:
 Площадь треугольника вписанного в окружность, 
если известен полупериметр:
 Площадь треугольника вписанного в окружность, 
если известен высота и основание:
 Площадь треугольника вписанного в окружность, 
если известна сторона и два прилежащих к ней угла:
 Площадь треугольника вписанного в окружность, 
если известны две стороны и синус угла между ними:
[ S = fracab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность, 
 если известны все стороны:
 Периметр треугольника вписанного в окружность, 
если известна площадь и радиус вписанной окружности: 
 Периметр треугольника вписанного в окружность, 
если известны две стороны и угол между ними:
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность, 
 если известны две стороны и косинус угла между ними:
 Сторона треугольника вписанного в 
окружность, если известна сторона и два угла: 
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного 
 в окружность, если известно основание:
 Средняя линия треугольника вписанного в окружность, 
если известныдве стороны, ни одна из них не является 
основанием, и косинус угламежду ними: 
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность, 
 если известна площадь и основание:
 Высота треугольника вписанного в окружность, 
если известен сторона и синус угла прилежащего 
к этой стороне, и находящегося напротив высоты:
[ h = b cdot sin alpha ]
 Высота треугольника вписанного в окружность, 
если известен радиус описанной окружности и 
две стороны, ни одна из которых не является основанием:
Видео:Треугольник. Расстояние от вершины до точки касания вневписанной окружности. Задание 16Скачать

Свойства
- Центр вписанной в треугольник окружности 
 находится на пересечении биссектрис.
- В треугольник, вписанный в окружность, 
 можно вписать окружность, причем только одну.
- Для треугольника, вписанного в окружность, 
 справедлива Теорема Синусов, Теорема Косинусов
 и Теорема Пифагора.
- Центр описанной около треугольника окружности 
 находится на пересечении серединных перпендикуляров.
- Все вершины треугольника, вписанного 
 в окружность, лежат на окружности.
- Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и 
 треугольника, в который вписана окружность, можно найти по
 формуле Герона.
Видео:РАДИУС вписанной окружности #математика #огэ #огэматематика #данирСкачать

Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
 
окружность и треугольник, 
которые изображены на рисунке 2.
окружность описана 
около треугольника.
- Проведем серединные 
 перпендикуляры — HO, FO, EO.
- O — точка пересечения серединных 
 перпендикуляров равноудалена от
 всех вершин треугольника.
- Центр окружности — точка пересечения 
 серединных перпендикуляров — около
 треугольника описана окружность — O,
 от центра окружности к вершинам можно
 провести равные отрезки — радиусы — OB, OA, OC.
окружность описана около треугольника, 
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
🎥 Видео
Треугольник и окружность #shortsСкачать

Деление окружности на 3; 6; 12 равных частейСкачать

ОГЭ ЗАДАНИЕ 16 РАЗДЕЛ ГЕОМЕТРИЯ ПРАВИЛЬНЫЙ ТРЕУГОЛЬНИК И ОКРУЖНОСТЬСкачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Вся геометрия треугольника в одной задаче. Планиметрия. ЕГЭ 2023 математика задача 16Скачать

ОГЭ. Задача на описанную окружность № 16. Как легко решить задачуСкачать

Много окружностей. Геометрия, задание №16 12+Скачать

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать

Треугольник, вписанный в окружность геометрия 7 классСкачать

Окружность || Часть 4 || Треугольник, вписанный в окружностьСкачать

Четырехугольники, вписанные в окружность. 9 класс.Скачать
























