Треугольник угол 45 градусов

Прямоугольные треугольники

Прямоугольный треугольник — это треугольник, у которого один угол прямой (равен $90$ градусов).

Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Содержание
  1. Некоторые свойства прямоугольного треугольника:
  2. Соотношение между сторонами и углами в прямоугольном треугольнике:
  3. Значения тригонометрических функций некоторых углов:
  4. Как найти стороны прямоугольного треугольника
  5. Онлайн калькулятор
  6. Найти гипотенузу (c)
  7. Найти гипотенузу по двум катетам
  8. Найти гипотенузу по катету и прилежащему к нему острому углу
  9. Найти гипотенузу по катету и противолежащему к нему острому углу
  10. Найти гипотенузу по двум углам
  11. Найти катет
  12. Найти катет по гипотенузе и катету
  13. Найти катет по гипотенузе и прилежащему к нему острому углу
  14. Найти катет по гипотенузе и противолежащему к нему острому углу
  15. Найти катет по второму катету и прилежащему к нему острому углу
  16. Найти катет по второму катету и противолежащему к нему острому углу
  17. Свойства прямоугольного треугольника
  18. Определение прямоугольного треугольника
  19. Свойства прямоугольного треугольника
  20. Свойство 1
  21. Свойство 2
  22. Свойство 3
  23. Свойство 4
  24. Свойство 5
  25. Пример задачи
  26. 🎬 Видео

Некоторые свойства прямоугольного треугольника:

1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.

2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.

3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.

5. В равнобедренном прямоугольном треугольнике гипотенуза равна катету, умноженному на $√2$

6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$

7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.

1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

В прямоугольном треугольнике $АВС$ для острого угла $В$:

5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.

6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.

7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$$/$$/$$/$
$cosα$$/$$/$$/$
$tgα$$/$$1$$√3$
$ctgα$$√3$$1$$/$

Площадь прямоугольного треугольника равна половине произведения его катетов

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $АВ=10, АС=√$. Найдите косинус внешнего угла при вершине $В$.

Так как внешний угол $АВD$ при вершине $В$ и угол $АВС$ смежные, то

Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Следовательно, для угла $АВС$:

Катет $ВС$ мы можем найти по теореме Пифагора:

Подставим найденное значение в формулу косинуса

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $sin⁡A=/, AC=9$. Найдите $АВ$.

Распишем синус угла $А$ по определению:

Так как мы знаем длину катета $АС$ и он не участвует в записи синуса угла $А$, то можем $ВС$ и $АВ$ взять за части $4х$ и $5х$ соответственно.

Применим теорему Пифагора, чтобы отыскать $«х»$

Так как длина $АВ$ составляет пять частей, то $3∙5=15$

В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:

Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.

В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.

Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Как найти стороны прямоугольного треугольника

Видео:Геометрия Синус.Чему равен синус 30,45,60 градусов?Вывод табличных значений.Скачать

Геометрия Синус.Чему равен синус 30,45,60 градусов?Вывод табличных значений.

Онлайн калькулятор

Треугольник угол 45 градусов

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

следовательно: c = √ a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = √ 5² — 4² = √ 25 — 16 = √ 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

Видео:Построение углов заданной градусной мерыСкачать

Построение углов заданной градусной меры

Свойства прямоугольного треугольника

В данной публикации мы рассмотрим определение и свойства прямоугольного треугольника. Также разберем пример решения задачи для закрепления изложенного материала.

Видео:Треугольники с углами 45, 45 и 90 градусовСкачать

Треугольники с углами 45, 45 и 90 градусов

Определение прямоугольного треугольника

Прямоугольным называют треугольник, в котором один из трех углов является прямым, т.е. равным 90°.

Треугольник угол 45 градусов

Прямоугольный треугольник может быть равнобедренным – когда оба катета равны, а угол между каждым из них и гипотенузой составляет 45°.

Треугольник угол 45 градусов

Видео:3 лучших способа отрезать потолочный плинтус под 45 градусов быстро и точноСкачать

3 лучших способа отрезать потолочный плинтус под 45 градусов быстро и точно

Свойства прямоугольного треугольника

Свойство 1

Сумма двух острых углов прямоугольного треугольника равняется 90°.

α + β = 90°

Сумма всех углов любого треугольника составляет 180°. Т.к. один угол равен 90°, на два других, также, остается 90°.

Свойство 2

Катет прямоугольного треугольника, расположенный напротив угла в 30°, равняется половине его гипотенузы.

В нашем случае, катет AB лежит напротив ∠ACB = 30°. Следовательно:

Треугольник угол 45 градусов

Треугольник угол 45 градусов

Если длина одного из катетов прямоугольного треугольника в два раза меньше длины его гипотенузы, значит угол напротив этого катета равняется 30°.

Свойство 3

Терему Пифагора можно, также, отнести к свойствам прямоугольного треугольника. Согласно ее формулировке, сумма квадратов катетов (a и b) равняется квадрату гипотенузы (c).

Таким образом, гипотенуза прямоугольного треугольника больше любого из его катетов.

Свойство 4

Медиана, опущенная на гипотенузу прямоугольного треугольника (проведенная из вершины прямого угла), равняется половине гипотенузы.

Треугольник угол 45 градусов

Свойство 5

Середина гипотенузы прямоугольного треугольника – это центр описанной вокруг него окружности.

Треугольник угол 45 градусов

Согласно свойству 4, рассмотренному выше, медиана BO равняется половине гипотенузы AC и, одновременно, радиусу окружности, описанной вокруг △ABC.

Видео:Как отрезать трубу под 45 градусов с минимальным зазоромСкачать

Как отрезать трубу под 45 градусов с минимальным зазором

Пример задачи

В качестве примера давайте рассмотрим второе свойство, представленное выше. Допустим у нас имеется прямоугольный треугольник ABC с прямым углом в вершине C. Катет BC расположен напротив угла в 30°. Нужно доказать, что BC в два раза меньше гипотенузы AB.

Решение

Нарисуем чертеж по условиям задачи, и зеркально отразим получившийся треугольник.

Треугольник угол 45 градусов

Получаем △ABD, в котором ∠BAD равен 60° (30° + 30°). Т.к. все три угла данного треугольника равны, он является равносторонним. Следовательно, AD = AB = BD.

Отрезки BC и CD равны между собой (зеркально отраженные), и каждый из них составляет половину BD. Как мы уже выяснили, BD равняется AB.

Таким образом, BC в два раза меньше AB (или AB = 2BC).

🎬 Видео

Как точно отрезать профильную трубу под 45 градусов. Новичкам вручную болгаркойСкачать

Как точно отрезать профильную трубу под 45 градусов. Новичкам вручную болгаркой

Секрет точного реза профильной трубы под 45 градусов. Вручную болгаркойСкачать

Секрет точного реза профильной трубы под 45 градусов. Вручную болгаркой

Измерение угла с помощью транспортираСкачать

Измерение угла с помощью транспортира

Геометрия ОГЭ задача Теорема синусовСкачать

Геометрия ОГЭ задача Теорема синусов

Угольник Свенсона. 7 функций в домашних условиях.Скачать

Угольник Свенсона. 7 функций в домашних условиях.

№1027. Найдите стороны треугольника ABC, если ∠A=45°, ∠C=30°, а высота AD равна 3 м.Скачать

№1027. Найдите стороны треугольника ABC, если ∠A=45°, ∠C=30°, а высота AD равна 3 м.

Скрытые возможности обычного угольника! А вы их знали?Скачать

Скрытые возможности обычного угольника! А вы их знали?

✏️📐 Секреты геометрии: построй угол 45° без транспортира! 🤯Скачать

✏️📐 Секреты геометрии: построй угол 45° без транспортира! 🤯

ЗНАЧЕНИЯ СИНУСА, КОСИНУСА И ТАНГЕНСА 30, 45 И 60 ГРАДУСОВСкачать

ЗНАЧЕНИЯ СИНУСА, КОСИНУСА И ТАНГЕНСА 30, 45 И 60 ГРАДУСОВ

№155. С помощью циркуля и линейки постройте угол, равный: а) 45°; б) 22°30'.Скачать

№155. С помощью циркуля и линейки постройте угол, равный: а) 45°; б) 22°30'.

Три квадрата и 45 градусовСкачать

Три квадрата и 45 градусов

ОГЭ. Геометрия. 1 часть. Теорема синусов.Скачать

ОГЭ. Геометрия.  1 часть. Теорема синусов.

Простые способы разметить угол 45°Скачать

Простые способы разметить угол  45°

Классный способ для разметки любого угла без транспортира.Скачать

Классный способ для разметки любого угла без транспортира.
Поделиться или сохранить к себе: