Точка движется равномерно по окружности как изменится линейная скорость

Равномерное движение тела по окружности

Точка движется равномерно по окружности как изменится линейная скорость

1. Движением тела по окружности называют движение, траекторией которого является окружность. По окружности движутся, например, конец стрелки часов, точки лопасти вращающейся турбины, вращающегося вала двигателя и др.

При движении по окружности направление скорости непрерывно изменяется. При этом модуль скорости тела может изменяться, а может оставаться неизменным. Движение, при котором изменяется только направление скорости, а её модуль сохраняется постоянным, называется равномерным движением тела по окружности. Под телом в данном случае имеют в виду материальную точку.

2. Движение тела по окружности характеризуется определёнными величинами. К ним относятся, прежде всего, период и частота обращения. Период обращения тела по окружности ​ ( T ) ​ — время, в течение которого тело совершает один полный оборот. Единица периода — ​ ( [,T,] ) ​ = 1 с.

Частота обращения ​ ( (n) ) ​ — число полных оборотов тела за одну секунду: ​ ( n=N/t ) ​. Единица частоты обращения — ( [,n,] ) = 1 с -1 = 1 Гц (герц). Один герц — это такая частота, при которой тело совершает один оборот за одну секунду.

Связь между частотой и периодом обращения выражается формулой: ​ ( n=1/T ) ​.

Пусть некоторое тело, движущееся по окружности, за время ​ ( t ) ​ переместилось из точки А в точку В. Радиус, соединяющий центр окружности с точкой А, называют радиусом-вектором. При перемещении тела из точки А в точку В радиус-вектор повернётся на угол ​ ( varphi ) ​.

Точка движется равномерно по окружности как изменится линейная скорость

Быстроту обращения тела характеризуют угловая и линейная скорости.

Угловая скорость ​ ( omega ) ​ — физическая величина, равная отношению угла поворота ( varphi ) радиуса-вектора к промежутку времени, за которое этот поворот произошел: ​ ( omega=varphi/t ) ​. Единица угловой скорости — радиан в секунду, т.е. ​ ( [,omega,] ) ​ = 1 рад/с. За время, равное периоду обращения, угол поворота радиуса-вектора равен ​ ( 2pi ) ​. Поэтому ​ ( omega=2pi/T ) ​.

Линейная скорость тела ​ ( v ) ​ — скорость, с которой тело движется вдоль траектории. Линейная скорость при равномерном движении по окружности постоянна по модулю, меняется по направлению и направлена по касательной к траектории.

Линейная скорость равна отношению пути, пройденному телом вдоль траектории, ко времени, за которое этот путь пройден: ​ ( vec=l/t ) ​. За один оборот точка проходит путь, равный длине окружности. Поэтому ​ ( vec=2pi!R/T ) ​. Связь между линейной и угловой скоростью выражается формулой: ​ ( v=omega R ) ​.

Из этого равенства следует, что чем дальше от центра окружности расположена точка вращающегося тела, тем больше её линейная скорость.

4. Ускорение тела равно отношению изменения его скорости ко времени, за которое оно произошло. При движении тела по окружности изменяется направление скорости, следовательно, разность скоростей не равна нулю, т.е. тело движется с ускорением. Оно определяется по формуле: ​ ( vec=frac<Deltavec> ) ​ и направлено так же, как вектор изменения скорости. Это ускорение называется центростремительным ускорением.

Центростремительное ускорение при равномерном движении тела по окружности — физическая величина, равная отношению квадрата линейной скорости к радиусу окружности: ​ ( a=frac ) ​. Так как ​ ( v=omega R ) ​, то ​ ( a=omega^2R ) ​.

При движении тела по окружности его центростремительное ускорение постоянно по модулю и направлено к центру окружности.

Видео:Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. При равномерном движении тела по окружности

1) изменяется только модуль его скорости
2) изменяется только направление его скорости
3) изменяются и модуль, и направление его скорости
4) не изменяется ни модуль, ни направление его скорости

2. Линейная скорость точки 1, находящейся на расстоянии ​ ( R_1 ) ​ от центра вращающегося колеса, равна ​ ( v_1 ) ​. Чему равна скорость ​ ( v_2 ) ​ точки 2, находящейся от центра на расстоянии ​ ( R_2=4R_1 ) ​?

1) ​ ( v_2=v_1 ) ​
2) ​ ( v_2=2v_1 ) ​
3) ​ ( v_2=0,25v_1 ) ​
4) ​ ( v_2=4v_1 ) ​

3. Период обращения точки по окружности можно вычислить по формуле:

1) ​ ( T=2pi!Rv ) ​
2) ( T=2pi!R/v ) ​
3) ( T=2pi v ) ​
4) ( T=2pi/v ) ​

4. Угловая скорость вращения колеса автомобиля вычисляется по формуле:

1) ​ ( omega=a^2R ) ​
2) ( omega=vR^2 ) ​
3) ( omega=vR )
4) ( omega=v/R ) ​

5. Угловая скорость вращения колеса велосипеда увеличилась в 2 раза. Как изменилась линейная скорость точек обода колеса?

1) увеличилась в 2 раза
2) уменьшилась в 2 раза
3) увеличилась в 4 раза
4) не изменилась

6. Линейная скорость точек лопасти винта вертолёта уменьшилась в 4 раза. Как изменилось их центростремительное ускорение?

1) не изменилось
2) уменьшилось в 16 раз
3) уменьшилось в 4 раза
4) уменьшилось в 2 раза

7. Радиус движения тела по окружности увеличили в 3 раза, не меняя его линейную скорость. Как изменилось центростремительное ускорение тела?

1) увеличилось в 9 раз
2) уменьшилось в 9 раз
3) уменьшилось в 3 раза
4) увеличилось в 3 раза

8. Чему равен период обращения коленчатого вала двигателя, если за 3 мин он совершил 600 000 оборотов?

1) 200 000 с
2) 3300 с
3) 3·10 -4 с
4) 5·10 -6 с

9. Чему равна частота вращения точки обода колеса, если период обращения составляет 0,05 с?

1) 0,05 Гц
2) 2 Гц
3) 20 Гц
4) 200 Гц

10. Линейная скорость точки обода велосипедного колеса радиусом 35 см равна 5 м/с. Чему равен период обращения колеса?

1) 14 с
2) 7 с
3) 0,07 с
4) 0,44 с

11. Установите соответствие между физическими величинами в левом столбце и формулами для их вычисления в правом столбце. В таблице под номером физической
величины левого столбца запишите соответствующий номер выбранной вами формулы из правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
А) линейная скорость
Б) угловая скорость
В) частота обращения

ФОРМУЛА
1) ​ ( 1/T ) ​
2) ​ ( v^2/R ) ​
3) ​ ( v/R ) ​
4) ​ ( omega R ) ​
5) ​ ( 1/n ) ​

12. Период обращения колеса увеличился. Как изменились угловая и линейная скорости точки обода колеса и её центростремительное ускорение. Установите соответствие между физическими величинами в левом столбце и характером их изменения в правом столбце.
В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) угловая скорость
Б) линейная скорость
B) центростремительное ускорение

ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИНЫ
1) увеличилась
2) уменьшилась
3) не изменилась

Часть 2

13. Какой путь пройдёт точка обода колеса за 10 с, если частота обращения колеса составляет 8 Гц, а радиус колеса 5 м?

Видео:Центростремительное ускорение. 9 класс.Скачать

Центростремительное ускорение. 9 класс.

Равномерное движение по окружности в физике — формулы и определение с примерами

Равномерное движение по окружности:

На предыдущих уроках вы ознакомились с различными видами прямолинейного движения, с величинами, характеризующими эти движения, и определили, как изменяются эти величины со временем.

Наиболее простой вид криволинейного движения — это широко распространенное в природе и технике движение по окружности. Вращение точек поверхности Земли вокруг своей оси, точек часовых стрелок, точек автомобильных колес и др. является движением по окружности. Теоретическая и практическая важность изучения движения по окружности заключается в том, что произвольную криволинейную траекторию можно представить как сумму дуг окружностей разных радиусов (а). Самый простой вид движения по окружности — это равномерное движение.

Точка движется равномерно по окружности как изменится линейная скорость

• Равномерное движение по окружности — это движение, при котором модуль скорости материальной точки в каждой точке этой окружности остается неизменным. Такое движение характеризуется следующими величинами:

Период обращенияэто время, затраченное на один полный оборот материальной точки по окружности:

Точка движется равномерно по окружности как изменится линейная скорость

Где Точка движется равномерно по окружности как изменится линейная скорость— период обращения, Точка движется равномерно по окружности как изменится линейная скорость— число полных оборотов материальной точки за время Точка движется равномерно по окружности как изменится линейная скоростьЗа единицу периода обращения в СИ принята секунда: Точка движется равномерно по окружности как изменится линейная скорость

Частота обращенияэто число оборотов материальной точки по окружности, совершаемых за единицу времени:

Точка движется равномерно по окружности как изменится линейная скорость

Где Точка движется равномерно по окружности как изменится линейная скорость— частота обращения (иногда обозначается буквой Точка движется равномерно по окружности как изменится линейная скоростьЗа единицу частоты обращения в СИ принят 1 герц — частота такого обращения, когда тело за секунду совершает один полный оборот:

Точка движется равномерно по окружности как изменится линейная скорость

Период и частота обращения обратно пропорциональны друг другу:

Точка движется равномерно по окружности как изменится линейная скорость

Это означает, что во сколько раз уменьшится частота обращения, во столько же раз увеличится период обращения, и наоборот.

Угол поворотаэто угол, на который поворачивается радиус-вектор при движении материальной точки по окружности. Угол поворота измеряется отношением длины дуги окружности между начальным и конечным радиус-векторами к радиусу окружности (b):

Точка движется равномерно по окружности как изменится линейная скорость

Где Точка движется равномерно по окружности как изменится линейная скорость— угол поворота, Точка движется равномерно по окружности как изменится линейная скорость— длина дуги, соответствующая углу поворота, Точка движется равномерно по окружности как изменится линейная скорость— радиус окружности. Углы поворота радиус-вектора материальной точки, движущейся равномерно по окружности, за равные промежутки времени одинаковы.

Точка движется равномерно по окружности как изменится линейная скорость

Угол поворота является скалярной величиной, единица его измерения в СИ — радиан: Точка движется равномерно по окружности как изменится линейная скорость

1 рад — это угол поворота радиус-вектора, соответствующий дуге, длина которой равна радиусу окружности Точка движется равномерно по окружности как изменится линейная скорость

Угловая скоростьэто физическая величина, измеряемая отношением угла поворота к промежутку времени, за которое этот поворот совершен:

Точка движется равномерно по окружности как изменится линейная скорость

Угловая скорость материальной точки, равномерно движущейся по окружности, с течением времени остается неизменной Точка движется равномерно по окружности как изменится линейная скоростьЕдиница угловой скорости в СИ — радиан в секунду:

Точка движется равномерно по окружности как изменится линейная скорость

За единицу угловой скорости принята угловая скорость такого равномерного движения по окружности, при котором за 1 секунду радиус-вектор материальной точки поворачивается на угол в 1 радиан.

Материальная точка, движущаяся равномерно по окружности, за время, равное периоду обращения Точка движется равномерно по окружности как изменится линейная скоростьсовершает один полный оборот, за это время радиус-вектор поворачивается на угол Точка движется равномерно по окружности как изменится линейная скоростьПоэтому при равномерном движении по окружности между угловой скоростью и периодом обращения (частотой обращения) имеется связь:

Точка движется равномерно по окружности как изменится линейная скорость

Линейная скорость. Скорость движения материальной точки по окружности называется линейной скоростью. Линейная скорость материальной точки, равномерно движущейся по окружности, оставаясь постоянной по модулю Точка движется равномерно по окружности как изменится линейная скоростьнепрерывно изменяется по направлению и в любой точке направлена по касательной к траектории (с).

Точка движется равномерно по окружности как изменится линейная скорость

Численное значение линейной скорости при равномерном движении по окружности равно отношению пройденного пути ко времени, затраченному на его прохождение:

Точка движется равномерно по окружности как изменится линейная скорость

Материальная точка, двигаясь равномерно по окружности, за время, равное периоду обращения Точка движется равномерно по окружности как изменится линейная скоростьпроходит путь, равный длине круга: Точка движется равномерно по окружности как изменится линейная скоростьПриняв это во внимание в формуле линейной скорости, получим выражение, связывающее линейную скорость с угловой скоростью:

Точка движется равномерно по окружности как изменится линейная скорость

Центростремительное ускорение:

Быстрота изменения направления линейной скорости при равномерном движении по окружности характеризуется физической величиной называемой центростремительным, или нормальным, ускорением. Вектор центростремительного, или нормального, ускорения в любой точке траектории направлен по радиусу к центру окружности (см.: с). Модуль центростремительного ускорения материальной точки при равномерном движении по окружности равен отношению квадрата линейной скорости к радиусу окружности:

Точка движется равномерно по окружности как изменится линейная скорость

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Взаимная передача вращательного и поступательного движения
  • Движение горизонтально брошенного тела
  • Движение тела, брошенного под углом к горизонту
  • Принцип относительности Галилея
  • Колебательный контур в физике
  • Исследовательские методы в физике
  • Вертикальное движение тел в физик
  • Неравномерное движение по окружности

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Точка движется равномерно по окружности как изменится линейная скорость

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Видео:Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

Точка движется равномерно по окружности как изменится линейная скорость

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

Точка движется равномерно по окружности как изменится линейная скорость

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Точка движется равномерно по окружности как изменится линейная скорость

Количество оборотов выражается следующей формулой:

Точка движется равномерно по окружности как изменится линейная скорость

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Точка движется равномерно по окружности как изменится линейная скорость

Видео:Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

Точка движется равномерно по окружности как изменится линейная скорость

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

Точка движется равномерно по окружности как изменится линейная скорость

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Точка движется равномерно по окружности как изменится линейная скорость

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Точка движется равномерно по окружности как изменится линейная скорость

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

Точка движется равномерно по окружности как изменится линейная скорость

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

Точка движется равномерно по окружности как изменится линейная скорость

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Точка движется равномерно по окружности как изменится линейная скорость

Выражая угловую скорость через частоту, получим:

Точка движется равномерно по окружности как изменится линейная скорость

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Точка движется равномерно по окружности как изменится линейная скорость

Сравним две формулы:

Точка движется равномерно по окружности как изменится линейная скорость

Преобразуем формулу линейной скорости и получим:

Точка движется равномерно по окружности как изменится линейная скорость

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Точка движется равномерно по окружности как изменится линейная скорость

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

Точка движется равномерно по окружности как изменится линейная скорость

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Видео:Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)Скачать

Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Точка движется равномерно по окружности как изменится линейная скорость

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Точка движется равномерно по окружности как изменится линейная скорость

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Точка движется равномерно по окружности как изменится линейная скорость

Подставляем известные данные в формулу и вычисляем:

Точка движется равномерно по окружности как изменится линейная скорость

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Точка движется равномерно по окружности как изменится линейная скорость

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Точка движется равномерно по окружности как изменится линейная скорость

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Точка движется равномерно по окружности как изменится линейная скорость

Произведем сокращения и получим:

Точка движется равномерно по окружности как изменится линейная скорость

Точка движется равномерно по окружности как изменится линейная скорость

Точка движется равномерно по окружности как изменится линейная скорость

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

🔥 Видео

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | Инфоурок

Линейная и угловая скорости при равномерном движении по окружностиСкачать

Линейная и угловая скорости при равномерном движении по окружности

Ускорение при равномерном движении по окружностиСкачать

Ускорение при равномерном движении по окружности

Физика 9 класс (Урок№4 - Движение тела по окружности. Период и частота)Скачать

Физика 9 класс (Урок№4 - Движение тела по окружности. Период и частота)

Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)Скачать

Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)

Кинематика. Движение по окружности. Урок 4Скачать

Кинематика. Движение по окружности. Урок 4

КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ - Угловое Перемещение, Угловая Скорость, Центростремительное УскорениеСкачать

КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ - Угловое Перемещение, Угловая Скорость, Центростремительное Ускорение

Вращательное движение. 10 класс.Скачать

Вращательное движение. 10 класс.

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорениеСкачать

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорение

Лекция 6.1 | Описание движения по окружности | Александр Чирцов | ЛекториумСкачать

Лекция 6.1 | Описание движения по окружности | Александр Чирцов | Лекториум

Угловая скорость и радианная мера углаСкачать

Угловая скорость  и радианная мера угла

Урок 88 (осн). Линейная скорость точки на вращающемся телеСкачать

Урок 88 (осн). Линейная скорость точки на вращающемся теле

Физика | Равномерное движение по окружностиСкачать

Физика | Равномерное движение по окружности

Равномерное движение точки по окружности | Физика 10 класс #7 | ИнфоурокСкачать

Равномерное движение точки по окружности | Физика 10 класс #7 | Инфоурок
Поделиться или сохранить к себе: