Теорема о единственности плоскости проходящей через две параллельные прямые

Стереометрия. Страница 2

Теорема о единственности плоскости проходящей через две параллельные прямые

  • Главная
  • Репетиторы
  • Учебные материалы
  • Контакты

Теорема о единственности плоскости проходящей через две параллельные прямые

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

1. Параллельность прямых в пространстве

Теорема. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Доказательство. Пусть b данная прямая и точка А, не лежащая на данной прямой. Проведем через точку А и прямую b плоскость α. А через точку А прямую a, параллельную прямой b. (Рис.1)

Допустим, что существует другая прямая а’, параллельная прямой b и проходящая через точку А. Тогда через них можно провести плоскость β. Отсюда следует, что через точку А и прямую b можно провести две плоскости. А это невозможно согласно теореме о единственности существования плоскости, проведеной через прямую и не лежащую на ней точку. Таким образом, плоскости α и β совпадают. А следовательно, согласно аксиоме, прямые а и a’ совпадают также.

5. Пример 1

Докажите, что если прямые АВ и CD скрещивающиеся, то прямые АС и BD тоже скрещиваются.

Доказательство:

Пусть даны две скрещивающиеся прямые АВ и CD. Проведем через прямую АВ и точку С плоскость α (Рис.5). Так как прямые АВ и CD скрещивающиеся, то прямая CD не лежит в плоскости α, а пересекает ее в одной точке С.

Отсюда следует, что точка D не принадлежит плоскости α. Она лежит вне ее.

Таким образом, если мы проведем прямую АС, то она полностью будет принадлежать плоскости α, так как две ее точки А и С принадлежат плоскости α.

А прямая BD не будет принадлежать плоскости α, так как точка D не принадлежит плоскости α. Прямая BD будет пересекать плоскость α в одной точке В.

Отсюда можно сделать вывод, что прямая АС не может пересекать прямую BD, так как прямая АС полностью принадлежит плоскости α. А прямая BD имеет только одну общую точку с плоскостью α, точку В. Но так как точка В не лежит на прямой АС, следовательно, прямые АС и BD не пересекаются. Они являются скрещивающимися.

Теорема о единственности плоскости проходящей через две параллельные прямые

Рис.5 Задача. Докажите, что если прямые АВ и CD скрещивающиеся.

Пример 2

Точки А, В, С, D не лежат в одной плоскости. Докажите, что прямая, проходящая через середины отрезков АВ и ВС, параллельна прямой, проходящей через середины отрезков AD и CD.

Доказательство:

Пусть даны четыре точки А, В, С, D, которые не лежат в одной плоскости. Проведем плоскость α через точки A, D, C и плосксоть α’ через точки А, В, С (Рис.6). Точки P, S, F, E являются серединами отрезков AB, BC, AD и CD соответственно. Необходимо доказать, что прямая PS параллельна прямой FE.

Рассмотрим треугольник АВС. Он полностью лежит в плоскости α’, так как три его вершины лежат в данной плоскости по построению. Отрезок PS представляет собой среднюю линию треугольника, которая параллельна АС.

Теперь рассмотрим треугольник АСD. Он полностью лежит в плоскости α, так как три его вершины лежат в данной плоскости по построению. Отрезок FE представляет собой среднюю линию треугольника, которая также параллельна АС.

Отсюда можно сделать вывод: если две прямые PS и FE параллельны третьей прямой АС, то они параллельны и между собой. И равны половине основанию АС. Таким образом, PSEF представляет собой параллелограмм.

Теорема о единственности плоскости проходящей через две параллельные прямые

Рис.6 Задача. Точки А, В, С, D не лежат в одной плоскости.

Пример 3

Даны четыре точки А, В, С, D, не лежащие в одной плоскости. Докажите, что прямые, соединяющие середины отрезков АВ и ВС, АС и BD, AD и BC пересекаются в одной точке.

Доказательство:

Пусть даны четыре точки А, В, С, D, которые не лежат в одной плоскости. Проведем отрезки EP, VS, FT, которые соединят середины сторон AB и CD, BC и AD, AC и BD соответственно (Рис.7).

Из предыдущей задачи нам известно, что четырехугольник EVPS, вершины которого являются серединами отрезков АВ, ВС, СD и AD, есть параллелограмм, у которого EP и VS диагонали. Эти диагонали пересекаются в точке О и делятся этой точкой пополам.

Теперь рассмотрим четырехугольник VTSF. Данный четырехугольник также является параллелограммом, так как его вершины — это середины отрезков BC, BD, AC и AD. А его диагонали VS и FT пересекаются в точке О и делятся этой точкой пополам.

Так как у отрезка VS середина одна, т.е. точка О, то все три диагонали EP, VS и FT пересекаются в этой точке.

Теорема о единственности плоскости проходящей через две параллельные прямые

Рис.7 Задача. Даны четыре точки А, В, С, D, не лежащие в одной плоскости.

Пример 4

Докажите, что если две плоскости, пересекающиеся по прямой а, пересекают плоскость α по параллельным прямым, то прямая а параллельна плоскости α.

Доказательство:

Пусть даны две плоскости β и γ, пересекающиеся по прямой а (Рис.8). Эти плоскости пересекают плоскость α по параллельным прямым b и с. Необходимо доказать, что прямая а параллельна плоскости α.

Прямая b — это множество точек, которые одновременно принадлежат плоскостям α и γ. Прямая с — это множество точек, которые одновременно принадлежат плоскостям α и β. Так как прямые b и с параллельны, то на этих прямых нет ни одной точки, которая одновременно принадлежала бы трем плоскостям.

Прямая а — это множество точек, которые принадлежат двум плоскостям β и γ. Допустим, что она пересекает плоскость α. Тогда на ней должна быть точка, которая принадлежала бы одновременно трем плоскостям. А следовательно, она одновременно лежала бы на прямых b и с. Но это противоречит условию задачи, так как прямые b и с не пересекаются. Следовательно, прямая а параллельна прямым b и с. А отсюда следует, что она параллельна плоскости α.

Теорема о единственности плоскости проходящей через две параллельные прямые

Рис.8 Задача. Докажите, что если две плоскости, пересекающиеся по прямой а.

Пример 5

Докажите, что если четыре прямые, проходящие через точку О, пересекают плоскость α в вершинах параллелограмма, то они пересекают любую плоскость, параллельную α и не проходящую через точку О, тоже в вершинах параллелограмма.

Доказательство:

Пусть даны четыре прямые, проходящие через точку О, ОА, ОВ, ОС и OD (Рис.9). Они пересекают плоскость α в точках А, В, С и D соответственно. Проведем плоскость α’, параллельную плоскости α. Тогда прямые ОА, ОВ, ОС и OD пересекут плоскость α’ в точках A’B’C’D’.

Проведем плоскость β через точки А, В, A’, B’. Тогда прямые АВ и A’B’ не пересекаются, так как это прямые пересечения двух параллельных плоскостей α и α’ с секущей плоскостью β.

Отсюда следует, что прямые ВС и В’С’, CD и C’D’, AD и A’D’ параллельны. А так как АВ параллельна CD, а ВС параллельна AD, то следовательно, А’В’ параллельна C’D’, а В’С’ параллельна A’D’.

Таким образом, A’B’C’D’ также является параллелограммом.

Теорема о единственности плоскости проходящей через две параллельные прямые

Рис.9 Задача. Докажите, что если четыре прямые, проходящие через точку А.

Видео:10 класс, 6 урок, Параллельность прямой и плоскостиСкачать

10 класс, 6 урок, Параллельность прямой и плоскости

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок №4. Параллельность прямых, прямой и плоскости

Перечень вопросов, рассматриваемых в теме

  1. Определение параллельных прямых;
  2. Теорема о единственности прямой, параллельной данной, проходящей через данную точку;
  3. лемма о двух параллельных прямых;
  4. теорему о параллельности трех прямых;
  5. определение параллельных прямой и плоскости;
  6. признаком параллельности прямой и плоскости.

Глоссарий по теме

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые − прямые, которые не лежат в одной плоскости.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия 10-11 кл.– М.: Просвещение, 2014. 255 с.

Зив Б. Г. Дидактические материалы. Геометрия 10 кл. – М.: Просвещение, 2014. 96 с.

Глазков Ю. А., Юдина И. И., Бутузов В.Ф. Рабочая тетрадь. Геометрия 10 кл.-М.: Просвещение, 2013. 65 с.

Теоретический материал для самостоятельного изучения

Геометрия, которую мы изучаем, называется евклидовой, по имени древнегреческого ученого Евклида (3 век до нашей эры), который создал целый труд по математике под названием «Начала». В данной книге есть раздел о параллельных прямых.

В советском энциклопедическом словаре слово «параллельность» переводится с греческого языка, как «идущий рядом».

В средние века параллельность обозначалась знаком «=». В 1557 году Р. Рекордом для обозначения равенства был введен знак «=», которым мы пользуемся сейчас, а параллельность стали обозначать «║».

В книге «Начала» определение параллельных прямых звучало так «прямые, лежащие в одной плоскости и будучи бесконечно продолжены в обе стороны, ни с той, ни с другой стороны не пересекаются». Это определение почти не отличается от современного.

В области параллельных прямых работало очень много учёных: Н.И. Лобаческий (18-19 век); Аббас ал-Джаухари (работал в Багдаде в 9 веке); Фадл ал-Найризи (Богдад 10 век); Герард (Италия 12 век); Иоганн Генрих Ламберт (Берлин) и многие другие.

Каково расположение 2-х прямых на плоскости (совпадают, пересекаются, параллельны) (рис. 1 а, б, в).

Теорема о единственности плоскости проходящей через две параллельные прямые

Теорема о единственности плоскости проходящей через две параллельные прямыеПерейдем к взаимному расположению 2-х прямых в пространстве. Как и в планиметрии, две различные прямые в пространстве либо пересекаются в одной точке, либо не пересекаются (не имеют общих точек). Но второй случай допускает две возможности: прямые лежат в одной плоскости (параллельны) или прямые не лежат в одной плоскости. В первом случае они параллельны, а во втором — такие прямые называются скрещивающимися.

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

Теорема о единственности плоскости проходящей через две параллельные прямыеПроиллюстрировать данные определения наглядно нам поможет куб.

Давайте укажем некоторые пары параллельных прямых:

AB||A₁B₁; AB|| CD; A₁B₁||C₁D₁; CD||C₁D₁; AD||A₁D₁; BC||B₁D₁; AD||BC; A₁D₁||B₁C₁.

А теперь рассмотрим некоторые пары скрещивающихся прямых, как мы отметили, они не должны лежать в одной плоскости:

AB A₁D₁; AB B₁C₁; CD A₁D₁; CD B₁C₁; BC C₁D₁; BC A₁B₁; AB B₁C₁; AB A₁D₁.

Теорема. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

  1. М и а задают плоскость α
  2. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с точкой М и прямой а, т.е. в плоскости α.
  3. В плоскости α через точку М проходит прямая, параллельная прямой а, и притом только одна- это нам известно из кураса планиметрии.
  4. На чертеже эта прямая обозначена буквой b .
  5. Следовательно, b-единственная прямая, проходящая через точку М паралельно прямой а.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Аналогично определяется праралельность отрезка и прямой, а так же паралельность двух лучей.

Теорема о единственности плоскости проходящей через две параллельные прямыеЛемма. Если одна из двух паралельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

  1. Рассмотрим две параллельные прямые a и b и допустим, что прямая b пересекает плоскость α в точке M(а рис.).
  2. Мы знаем, что через параллельные прямые a и b можно провести только одну плоскость β. (теорема)
  1. Так как точка M находится на прямой b, то M также принадлежит плоскости β (б рис.). Если у плоскостей α и β есть общая точка M, то у этих плоскостей есть общая прямая p, которая является прямой пересечения этих плоскостей (4 аксиома).
  1. Прямые a, b и c находятся в плоскости β.

Если в этой плоскости одна из параллельных прямых b пересекает прямую p, то вторая прямая a тоже пересекает p.

  1. Точку пересечения прямых a и p обозначим за N.

Так как точка N находится на прямой p, то N находится в плоскости α и является единственной общей точкой прямой a и плоскости α.

  1. Значит, прямая a пересекает плоскость α в точке N.

Нам известно из курса планиметрии, что если три прямые лежат в одной плоскости и две из них параллельны третьей, то эти две прямые параллельны. Похожее утверждение имеет место и для трех прямых в пространстве.

Теорема. Если две прямые параллельны третьей прямой, то они параллельны.

Теорема о единственности плоскости проходящей через две параллельные прямыеДоказательство:

Выберем точку M на прямой b.

Через точку M и прямую a, которая не содержит эту точку, можно провести только одну плоскость α (Через прямую и не лежащую на ней точку можно провести только одну плоскость).

Возможны два случая:

1) прямая b пересекает плоскость α или 2) прямая b находится в плоскости α.

Пусть прямая b пересекает плоскость α.

Значит, прямая c, которая параллельна прямой b, тоже пересекает плоскость α. Так как a∥c, то получается, что a тоже пересекает эту плоскость. Но прямая a не может одновременно пересекать плоскость α и находиться в плоскости α. Получаем противоречие, следовательно, предположение, что прямая b пересекает плоскость α, является неверным. Значит, прямая b находится в плоскости α.

Теперь нужно доказать, что прямые a и b параллельны.

Пусть у прямых a и b есть общая точка L.

Это означает, что через точку L проведены две прямые a и b, которые параллельны прямой c. Но по второй теореме это невозможно. Поэтому предположение неверное, и прямые a и b не имеют общих точек.

Так как прямые a и b находятся в одной плоскости α и у них нет общих точек, то они параллельны.

Если две точки прямой лежат в данной плоскости, то по аксиоме А₂ вся прямая лежит в этой плоскости. Из этого следует, что возможны три расположения прямой и плоскости:

Главная > Учебные материалы > Математика: Стереометрия. Страница 2
Теорема о единственности плоскости проходящей через две параллельные прямые
Теорема о единственности плоскости проходящей через две параллельные прямые
1.Параллельность прямых в пространстве.
2.Признак параллельности прямых.
3.Признак параллельности плоскостей.
4.Свойства параллельных плоскостей.
5.Примеры.
1 2 3 4 5 6 7 8
Теорема о единственности плоскости проходящей через две параллельные прямые
Теорема о единственности плоскости проходящей через две параллельные прямые

Рис. 1 Параллельность прямых в пространстве.

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

2.Признак параллельности прямых

Теорема. Две прямые, параллельные третьей прямой, параллельны.

Доказательство. Пусть прямые а и b лежат в разных плоскостях и параллельны прямой с. Доказать, что прямые а и b параллельны между собой. (Рис.2)

Проведем через прямую a и c плоскость α. Через прямые b и c плоскость β. Прямая с — прямая пересечения плоскостей α и β. Отметим на прямой а точку А. Проведем через точку А и прямую b плоскость γ. Тогда плоскость γ будет пересекать плоскость α по прямой а’. Прямая a’ либо паралельна прямой c, либо ее пересекает. Допустим прямая а’ пересекает прямую с. Тогда эта точка пересечения принадлежит плоскости β, т.к. прямая с принадлежит двум плоскостям α и β. А т.к. прямая а’ полностью принадлежит плоскости γ, а прямая b есть прямая пересечения плоскостей γ и β, то это означает, что она пересекает и прямую b. А это означает, что прямые b и c пересекаются, т.к. прямая a’ пересекает плоскость β только в одной точке, которая должна принадлежать двум прямым b и с. А это противоречит условию. Следовательно прямая a’ не пересекает прямую с. Она ей параллельна. Согласно аксиоме, на плоскости α, через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. И эта прямая а. Т.е. прямые а и а’ совпадают. Это значит, что прямые а и b параллельны.

Теорема о единственности плоскости проходящей через две параллельные прямые

Рис.2 Признак параллельности прямых

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

3. Признак параллельности плоскостей

Теорема: если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.

Доказательство.

Пусть α и β данные плоскости. Прямая а параллельна прямой а 1 . Прямая b параллельна b 1 (Рис.3). Допустим, что плоскости α и β пересекаются по прямой с. Тогда прямая с должна пересекать, как минимум, одну из прямых на каждой плоскости. Пусть это будут прямые а и а 1 . Т.к. прямые а и а 1 параллельны, следовательно они пересекают прямую с в разных точках Е и Е 1 . Проведем через две параллельные прямые а и а 1 плоскость γ. Тогда точки Е и Е 1 , которые лежат на прямой с, будут принадлежать плоскости γ. Следовательно, прямая с полностью принадлежит плоскости γ. Отсюда следует, что:

а ∈ α, γ.
а 1 ∈ β, γ.
с ∈ α, β,γ

т.е. плоскости α и γ пересекаются по двум прямым а и с, а плоскости β и γ пересекаются по прямым а 1 и с.

Теорема о единственности плоскости проходящей через две параллельные прямые

Рис. 3 Признак параллельности плоскостей.

Согласно аксиоме стереометрии, это невозможно, т.к. две плоскости могут пересекаться только по одной прямой. И следовательно, наше предположение неверно. Плоскости α и β не пересекаются, они параллельны.

Видео:Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

4. Свойства параллельных плоскостей

Теорема: Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны.

Доказательство.

Пусть даны две параллельные плоскости α и β (Рис.4). Плоскость γ пересекает их по прямым а и b.

Допустим, что прямые пересечения плоскостей пересекаются. Это прямые а и b’. Прямая а — это множество точек, принадлежащих плоскостям α и γ. А так как прямая b’ представляет собой множество точек, пренадлежащих двум плоскостям β и γ, то отсюда следует, что существует точка пересечения прямых а и b’, которая принадлежит плоскости α. И следовательно, плоскости α и β имеют общую точку. А это противоречит условию, т.к. плоскости α и β не пересекаются, они параллельны. Следовательно, прямые а и b лежат в одной плоскости и не пересекаются. Т.е. они тоже параллельны.

Теорема о единственности плоскости проходящей через две параллельные прямые

Рис. 4 Свойства параллельных плоскостей.

Теорема о единственности плоскости проходящей через две параллельные прямые

Теорема о единственности плоскости проходящей через две параллельные прямые

Теорема о единственности плоскости проходящей через две параллельные прямые

Теорема о единственности плоскости проходящей через две параллельные прямые

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Наглядный пример, который дает представление о прямой, параллельной плоскости- это линия пересечения стены и потолка-она параллельна плоскости пола.

Теорема о единственности плоскости проходящей через две параллельные прямые

Теорема (Признак параллельности прямой и плоскости)
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой на этой плоскости, то эта прямая параллельна данной плоскости.

Теорема о единственности плоскости проходящей через две параллельные прямые

Доказательство:
Доказательство проведем от противного. Пусть a не параллельна плоскости α, тогда прямая a пересекает плоскость в некоторой точке A. Причем A не находится на b, так как a∥b. Согласно признаку скрещивающихся прямых, прямые a и b скрещивающиеся.

Мы пришли к противоречию. Так как согласно данной информации a∥b, они не могут быть скрещивающимися. Значит, прямая a должна быть параллельна плоскости α.Теорема о единственности плоскости проходящей через две параллельные прямые

Существует еще два утверждения, которые используются при решении задач:

  1. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
  2. Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо тоже параллельна данной плоскости, либо лежит в этой плоскости.

Примеры и разбор решения заданий тренировочного модуля

Тип задания: Ввод с клавиатуры пропущенных элементов в тексте

Теорема о единственности плоскости проходящей через две параллельные прямые

Дано: в ∆ АВС КМ − средняя линия, КМ=5; ACFE- параллелограмм.

Решение: Т.к. КМ − средняя линия, то АС= 2·КМ, то АС=2·7=10

Т.к. ACFE − параллелограмм, то АС=EF=10

Тип задания: Единичный / множественный выбор

Точка М не лежит в плоскости ромба ABCD. На отрезке АМ выбрана точка Е так, что MЕ:ЕА=1:3. Точка F – точка пересечения прямой МВ с плоскостью CDE. Найдите АВ, если AD= 8 cм.

MC Теорема о единственности плоскости проходящей через две параллельные прямые

Т.к. AD||BC||FK, следовательно, треугольники MFK и MBC- подобны (по трем углам). Значит

Теорема о единственности плоскости проходящей через две параллельные прямые. BC=AD= 8 см; Теорема о единственности плоскости проходящей через две параллельные прямые

Видео:10 класс, 4 урок, Параллельные прямые в пространствеСкачать

10 класс, 4 урок, Параллельные прямые в пространстве

Уравнение плоскости, которая проходит через две пересекающиеся или две параллельные прямые

В данном материале мы расскажем, как правильно вычислить уравнение плоскости, которая проходит через 2 пересекающиеся или параллельные прямые. Начнем с формулировки основного принципа, а потом, как всегда, разберем несколько задач, где можно применить этот принцип на практике.

Видео:Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)

Как найти уравнение плоскости, проходящей через пересекающиеся прямые?

Для того чтобы вывести это уравнение, нам понадобится вспомнить одну теорему. Она звучит так:

Через две пересекающиеся прямые может проходить только одна плоскость.

Доказательство этого утверждения основано на двух аксиомах:

  1. через три точки с разными координатами, которые не лежат на одной прямой, проходит только одна плоскость;
  2. если у нас есть две точки прямой с разными координатами, расположенные в некоторой плоскости, то все точки этой прямой находятся в этой плоскости.

В итоге мы можем утверждать, что с помощью указания двух пересекающихся прямых мы можем задать определенную плоскость в трехмерном пространстве.

Далее нам нужно доказать, что плоскость, которая проходит через две определенные прямые, совпадет с той, что проходит через три заданные точки, две из которых находятся на тех самых прямых.

Допустим, у нас есть две прямые a и b с пересечением в некой точке M . Теперь расположим на первой прямой две точки М 1 и М 2 . У них должны быть разные координаты, но при этом одна из них может совпадать с точкой пересечения. На второй прямой отметим точку М 3 (но она совпадать с точкой M не должна). Теперь нам надо показать, что плоскость, проходящая через М 1 М 2 М 3 , – это та же самая плоскость, что проходит через пересекающиеся прямые a и b .

Посмотрим на схему:

Теорема о единственности плоскости проходящей через две параллельные прямые

Поскольку мы имеем точки прямой a , которые находятся в плоскости М 1 М 2 М 3 ( М 1 и М 2 ), то, используя аксиому, которую мы приводили выше, можно утверждать, что все точки этой прямой находятся в данной плоскости. Все точки прямой b тоже будут находиться в ней, поскольку там расположены две несовпадающие точки данной прямой ( М и М 3 ). Таким образом, мы доказали, что плоскости, в которых лежат данные прямые, совпадают.

Теперь перейдем непосредственно к формулировке уравнения плоскости, которая проходит через пересекающиеся прямые. Возьмем a и b , которые заданы в прямоугольной системе координат O x y z в трехмерном пространстве и являются пересекающимися. Напишем уравнение плоскости, которая проходит через эти прямые.

Все решение можно свести к нахождению уже изученного уравнения плоскости, проходящей через три точки. Сначала нам надо найти координаты двух точек M 1 и M 2 , которые расположены на пересекающихся прямых, и точки M 3 , которая находится на другой прямой и не является точкой их пересечения. Для этого можно использовать разные способы. Так, мы можем составить параметрические уравнения для первой прямой в пространстве. В итоге получим:

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

Отсюда можно вывести координаты x 1 , y 1 , z 1 точки M 1 , если λ = 0 . Для М 2 эти данные можно вычислить, если придать параметру любое действительное значение, отличное от нуля, например, единицу.

Далее мы можем составить такие же параметрические уравнения для второй прямой и, используя некоторое значение параметра, высчитать координаты М 3 . Важно проверить, чтобы она не лежала в точке пересечения прямых и вообще не находилась на прямой a .

Итак, мы нашли координаты всех нужных точек – М 1 , М 2 и М 3 . Переходим к написанию уравнения плоскости, которая через них проходит. Запишем:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0

Теперь найдем определитель матрицы x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 и получим общее уравнение для нужной нам плоскости, которая будет проходит через две заданные прямые a и b .

Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Как найти уравнение плоскости, проходящей через параллельные прямые?

Для этого нам понадобится вспомнить теорему, которая формулируется так:

Через две параллельные прямые проходит только одна плоскость.

Ее можно доказать, используя аксиому о единственной плоскости, которая проходит через три точки, а также утверждение о двух параллельных прямых (если одна из параллельных прямых пресекает некоторую плоскость, то это же делает и другая).

Итак, возможно задать плоскость в пространстве, если указать две параллельные прямые, которые в ней находятся.

Очевиден тот факт, что плоскость, которая проходит через 2 параллельные прямые и плоскость, которая проходит через три точки, две из которой лежат на одной из этих прямых, будут совпадать.

После этого мы можем найти уравнение плоскости, проходящей через две заданные параллельные прямые.

У нас есть прямоугольная система координат в трехмерном пространстве, которая обозначается O x y z . Составим уравнение плоскости, которая проходит через параллельные прямые a и b .

Сводим задачу опять же к нахождению уравнения для плоскости с тремя точками. В самом деле, можно определить, какие точно координаты будут иметь М 1 и М 2 , лежащие на одной из параллельных прямых, и М 3 , расположенная на другой прямой. После этого просто запишем нужное нам уравнение для плоскости, проходящей через три точки M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) в следующем виде:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0

Это и есть нужное нам уравнение плоскости, проходящей через заданные параллельные прямые.

Видео:10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскостиСкачать

10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскости

Примеры задач на нахождение подобных уравнений

Таким образом, для того чтобы составить уравнение плоскости, которая проходит через 2 пересекающиеся или параллельные прямые, требуется вычислить координаты трех точек, которые расположены на этих прямых (две точки на одной прямой и третья на другой). Посмотрим, как это принцип реализуется на практике.

У нас задана прямоугольная система координат в трехмерном пространстве. Расположенная в ней прямая a проходит через точку M 1 ( — 3 , 1 , — 4 ) и пересекает координатную прямую O y в точке M 2 ( 0 , 5 , 0 ) . Составьте уравнение плоскости, которая будет проходить через пересекающиеся a и O y .

Решение

Изначально у нас заданы координаты двух точек, которые расположены на исходной прямой. Для составления уравнения нам нужна третья. Возьмем точку начала координат O ( 0 , 0 , 0 ) . Она расположена на O y и не совпадает с координатами двух точек, которые были заданы в условии. Та плоскость, что будет проходить через них, и есть та, для которой нам надо вывести уравнение. Запишем его в координатном виде:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0 ⇔ x — 0 y — 0 z — 0 — 3 — 0 1 — 0 — 4 — 0 0 — 0 5 — 0 0 — 0 = 0 ⇔ ⇔ x y z — 3 1 — 4 0 5 0 = 0 ⇔ 20 x — 15 z = 0 ⇔ 4 x — 3 z = 0

Ответ: 4 x — 3 z = 0 .

Возьмем более сложный пример, где координаты нужных точек не будут столь очевидными.

У нас есть две пересекающиеся прямые a и b , которые заданы с помощью уравнений.

x — 7 4 = y — 7 5 = z + 5 — 6 x — 3 1 = y — 2 — 3 = z — 1 5

Составьте уравнение плоскости, которая проходит через них.

Решение

Начнем с вычисления координат трех необходимых точек. Две из них расположены на прямой a , третья – на b .

Прямая в условии задана с помощью канонических уравнений в пространстве вида x — 7 4 = y — 7 5 = z + 5 — 6 , следовательно, она будет проходить через точку x — 7 4 = y — 7 5 = z + 5 — 6 .

Для вычисления координат второй точки нам надо записать параметрическое уравнение:

x — 7 4 = y — 7 5 = z + 5 — 6 ⇔ x = 7 + 4 · λ y = 7 + 5 · λ z = — 5 — 6 · λ

Если мы примем λ = 1 , то сможем подсчитать координаты второй точки:

x = 7 + 4 · λ y = 7 + 5 · λ z = — 5 — 6 · λ ⇔ x = 11 y = 12 z = — 11

Мы получили, что M 2 ( 11 , 12 , — 11 ) .

Понятно, что прямая, заданная с помощью уравнения x — 3 1 = y — 2 — 3 = z — 1 5 , будет проходить через точку M 3 ( 3 , 2 , 1 ) . Перед вычислениями надо проверить, не лежит ли она в точке пересечения прямых. Для этого надо подставить ее координаты во второе уравнение:

3 — 7 4 = 2 — 7 5 = 1 + 5 — 6 ⇔ — 1 ≡ — 1 ≡ — 1

Мы видим, что канонические уравнения прямой свелись к тождествам. Тогда наша третья точка лежит именно в месте пересечения прямых, значит, нам надо взять еще одну, которая будет находится на прямой b . Для этого также запишем параметрические уравнения:

x — 3 1 = y — 2 — 3 = z — 1 5 ⇔ x = 3 + μ y = 2 — 3 · μ z = 1 + 5 · μ

Высчитаем нужные координаты, приняв μ = 1 .

x = 3 + 1 y = 2 — 3 · 1 z = 1 + 5 · 1 ⇔ x = 4 y = — 1 z = 6 ⇔ M 3 ( 4 , — 1 , 6 )

Далее мы можем переходить непосредственно у формулированию уравнения нужной нам плоскости, которая будет проходить через M 1 ( 7 , 7 , — 5 ) , M 2 ( 11 , 12 , — 11 ) , M 3 ( 4 , — 1 , 6 ) :

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0 ⇔ x — 7 y — 7 z — ( — 5 ) 11 — 7 12 — 7 — 11 — ( — 5 ) 4 — 7 — 1 — 7 6 — ( — 5 ) = 0 ⇔ ⇔ x — 7 y — 7 z + 5 4 5 — 6 — 3 — 8 11 = 0 ⇔ 7 x — 26 y — 17 z + 48 = 0

Ответ: 7 x — 26 y — 17 z + 48 = 0 .

Очевидно, что процесс вычисления координат нужных нам точек занимает больше всего времени при решении подобных задач.

Нам осталось разобрать пример плоскости, которая проходит через две прямые, являющиеся параллельными.

Составьте уравнение плоскости, которая проходит через две параллельные прямые. Они выражены с помощью уравнений x = 2 · λ y = 1 + λ z = — 1 — λ и x — 3 2 = y 1 = z + 5 — 1 .

Решение

Вычисляем координаты двух нужных точек по параметрическим уравнениям, приняв λ = 0 и λ = 1 .

λ = 0 : x = 2 · 0 y = 1 + 0 z = — 1 — 0 ⇔ x = 0 y = 1 z = — 1 ⇔ M 1 ( 0 , 1 , — 1 ) λ = 1 : x = 2 · 1 y = 1 + 1 z = — 1 — 1 ⇔ x = 2 y = 2 z = — 2 ⇔ M 2 ( 2 , 2 , — 2 )

У нас получается, что прямая x — 3 2 = y 1 = z + 5 — 1 будет проходить через точку M 3 ( 3 , 0 , — 5 ) .

Переходим к уравнению плоскости для трех точек М 1 , М 2 и М 3 :

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0 ⇔ x — 0 y — 1 z — ( — 1 ) 2 — 0 2 — 1 — 2 — ( — 1 ) 3 — 0 0 — 1 — 5 — ( — 1 ) = 0 ⇔ ⇔ x y — 1 z + 1 2 1 — 1 3 — 1 — 4 = 0 ⇔ — 5 x + 5 y — 5 z — 10 = 0 ⇔ x — y — z + 2 = 0

Ответ: x — y — z + 2 = 0 .

💥 Видео

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

10 класс, 10 урок, Параллельные плоскостиСкачать

10 класс, 10 урок, Параллельные плоскости

10 класс, 3 урок, Некоторые следствия из аксиомСкачать

10 класс, 3 урок, Некоторые следствия из аксиом

10 класс, 5 урок, Параллельность трех прямыхСкачать

10 класс, 5 урок, Параллельность трех прямых

10 класс - Геометрия - Параллельные прямые в пространстве. Параллельность трёх прямыхСкачать

10 класс - Геометрия - Параллельные прямые в пространстве. Параллельность трёх прямых

Перпендикулярность прямой и плоскости. 10 класс.Скачать

Перпендикулярность прямой и плоскости. 10 класс.

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.

Параллельность прямой к плоскостиСкачать

Параллельность прямой к плоскости

10 класс, 18 урок, Теорема о прямой, перпендикулярной к плоскостиСкачать

10 класс, 18 урок, Теорема о прямой, перпендикулярной к плоскости

Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||Скачать

Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||
Поделиться или сохранить к себе:
    1. прямая лежит в плоскости
    1. прямая и плоскость имеют только одну общую точку, т.е. пересекаются
    1. прямая и плоскость не имеют ни одной общей точки